

About PostgreSQL 9.5

PGCon Japan 2015
27th November 2015, Tokyo
Michael Paquier / VMware

Summary

● SQL features

● Management and performance

● WAL, Standbys & HA

UPSERT

● Replace constraint error with other actions

● New INSERT clauses
– ON CONFLICT .. DO NOTHING

– ON CONFLICT .. DO UPDATE

● Row-based approach

● Works with VALUES, SELECT statement

● More performant than plpgsql. Etc. equivalents

● Keyword EXCLUDED to reference former data

UPSERT (1) – DO NOTHING

CREATE TABLE tab (a int PRIMARY KEY, b text);
INSERT INTO tab VALUES (1, 'old'), (3, 'old');

INSERT INTO tab
 SELECT a, 'inserted'
 FROM generate_series(1, 4) AS a
 ON CONFLICT DO NOTHING;

SELECT * FROM tab;
 a | b
---+----------
 1 | old
 3 | old
 2 | inserted
 4 | inserted
(4 rows)

UPSERT (2) – DO UPDATE

INSERT INTO tab
 SELECT a, 'inserted'
 FROM generate_series(1, 4) AS a
 ON CONFLICT (a) DO UPDATE SET b = 'upserted';

SELECT * FROM tab;
 a | b
---+--------------
 1 | upserted
 2 | inserted
 3 | upserted
 4 | inserted
(4 rows)

UPSERT (3) - EXCLUDED

INSERT INTO tab VALUES (1, 'excluded');
ERROR: 23505: duplicate key value violates
 unique constraint "tab_pkey"
DETAIL: Key (a)=(1) already exists.

INSERT INTO tab VALUES (1, 'excluded')
 ON CONFLICT (a) DO UPDATE SET b = EXCLUDED.b;

=# SELECT * FROM tab WHERE a = 1;
 a | b
---+----------
 1 | excluded
(1 row)

BRIN indexes
● BRIN = Block Range INdex

● Minimum/Maximum values for a range of blocks

● Mix of sequential scan and index scan

● Good for clustered (ordered!) data
CREATE TABLE tabdata AS
SELECT generate_series (1,10000000) AS a;
CREATE INDEX tabdata_btree ON tabdata(a);
CREATE INDEX tabdata_brin ON tabdata USING brin(a);
SELECT relname, pg_size_pretty(pg_relation_size(oid))
 FROM pg_class WHERE relname LIKE 'tabdata_%';
 relname | pg_size_pretty
---------------+----------------
 tabdata_brin | 24 kB
 tabdata_btree | 214 MB
(2 rows)

GROUPING SETS, ROLLUP, CUBE
● GROUPING SETS

– multiple GROUP BY in single query

– Equivalent with UNION ALL with NULL columns

● CUBE => GROUPING SETS (list of subsets)

● ROLLUP => GROUPING SETS

CUBE (x1,x2,x3) => GROUPING SETS ((x1,x2,x3),
 (x1,x2),
 (x1, x3),
 (x1),
 (x2,x3), ...

ROLLUP (x1,x2,x3) => GROUPING SETS ((x1,x2,x3),
 (x1,x2),
 (x1))

JSONB additions
● Concatenation: jsonb || jsonb

● Substraction: jsonb – {text, int, text[]}
=# SELECT '{"a1":"v1","a2":"v2"}'::jsonb -
 'a1' AS field;
 field

 {"a2": "v2"}
(1 row)

=> SELECT '{"a1":"v1"}'::jsonb ||
 '{"a2":"v2"}'::jsonb AS field;
 field

 {"a1": "v1", "a2": "v2"}
(1 row)

● jsonb_pretty, jsonb_replace, jsonb_set

Row-level security (RLS)

● Tuple-level control of user visibility
– RLS = horizontal

– existing REMOTE/GRANT = vertical

● Parametrization
– GUC parameter row_security to 'on' (default)

– ALTER TABLE .. ENABLE ROW LEVEL SECURITY

– CREATE POLICY on a table

● USING clause for policy granularity (user name,
timestamp, function input, etc.)

RLS – Example setup

CREATE TABLE salaries (id int, name text, salary int);
ALTER TABLE salaries ENABLE ROW LEVEL SECURITY;
INSERT INTO salaries VALUES (1, 'salaryman1', 1500000);
INSERT INTO salaries VALUES (2, 'salaryman2', 150);
GRANT ALL ON TABLE salaries TO PUBLIC;

CREATE USER salaryman1;
CREATE USER salaryman2;

CREATE POLICY salary_control ON salaries
 FOR ALL TO PUBLIC USING (name = current_user);

RLS – let's query it!

=# SET SESSION AUTHORIZATION salaryman1;
SET
=> SELECT * FROM salaries ;
 id | name | salary
----+------------+---------
 1 | salaryman1 | 1500000
(1 row)
=> SET SESSION AUTHORIZATION salaryman2;
SET
=> SELECT * FROM salaries ;
 id | name | salary
----+------------+--------
 2 | salaryman2 | 150
(1 row)

FDW improvements

● IMPORT FOREIGN SCHEMA

● Foreign tables as part of inheritance tree

● CHECK constraints for foreign tables as
planner hints

● Basics for JOIN pushdown with custom scans

Performance and scalability

● In-memory sorting for text, varchar, numeric
– Speed up CREATE INDEX, CLUSTER

– ORDER BY speed up

● 128-bit accumulators for aggregates

● In-memory hash improvements (number of
buckers bumped from 16 to 128)

● Scalability on multi-socket machines

● Speed up CRC calculation (CRC32-C)

Standbys

● Built from base backup of existing node
– FS-level backup or snapshot

– pg_basebackup

– pg_start_backup() and pg_stop_backup() with
custom method

● Backup taken from master or other standby

● Can be read-only:
– hot_standby = on

– wal_level >= hot_standby

Streaming standby
● Consumes WAL via streaming replication

● Can optionally consume WAL archives

● primary_conninfo in recovery.conf

● Can be synchronous

Master Standby

WAL
Archive

archive_command re
sto

re
_co

mmand

WAL Stream
primary_conninfo

Archive and promotion <= 9.4

● Standby archives last, partial WAL segment of
old timeline at promotion
– Conflicts if archived from standby and master

– Size of 16MB, with garbage after fork point

Master Standby Archive

000000010000000000000022
000000010000000000000023
000000010000000000000024

000000010000000000000025

000000010000000000000022
000000010000000000000023
000000010000000000000024

Promotion
000000010000000000000025
000000020000000000000025
000000020000000000000026

000000010000000000000022
000000010000000000000023
000000010000000000000024

000000010000000000000025
000000020000000000000025
000000020000000000000026

Archive and promotion >= 9.5

● Standby still archives last, partial segment at
promotion of old timeline
– With suffix .partial

– No name conflict

– Format not recognized by backend, should be renamed
manually if used at recovery

Master Standby Archive

000000010000000000000022
000000010000000000000023
000000010000000000000024
000000010000000000000025

000000010000000000000022
000000010000000000000023
000000010000000000000024

Promotion
000000010000000000000025
000000020000000000000025
000000020000000000000026

000000010000000000000022
000000010000000000000023
000000010000000000000024
000000010000000000000025
000000010000000000000025.

partial
000000020000000000000025
000000020000000000000026

Lost WAL segments

● Master crashed before archiving all segments
– Game over to recover from older backups on new

timeline

– Series of backups now useless

Master Standby Archive

000000010000000000000022
000000010000000000000023
000000010000000000000024
000000010000000000000025

000000010000000000000022
000000010000000000000023
000000010000000000000024

Promotion
000000010000000000000025
000000020000000000000025
000000020000000000000026

000000010000000000000022
000000010000000000000023

000000010000000000000025.
partial

000000020000000000000025
000000020000000000000026

Master Standby Archive

000000010000000000000022
000000010000000000000023
000000010000000000000024
000000010000000000000025

000000010000000000000022
000000010000000000000023
000000010000000000000024

Promotion
000000010000000000000025
000000020000000000000025
000000020000000000000026

000000010000000000000022
000000010000000000000023

000000010000000000000025.
partial

000000020000000000000025
000000020000000000000026

archive_mode = 'always'

● No changes on master node compared to 'on'

● In recovery mode
– standby will archive segments whose reception is finished

– For <= 9.4, forcibly switched to .done

– May want to use same archive_command. Or not.

Master Standby Archive

000000010000000000000022
000000010000000000000023
000000010000000000000024
000000010000000000000025

000000010000000000000022
000000010000000000000023
000000010000000000000024

Promotion
000000010000000000000025
000000020000000000000025
000000020000000000000026

000000010000000000000022
000000010000000000000023
000000010000000000000024

000000010000000000000025.
partial

000000020000000000000025
000000020000000000000026

archive_mode = 'always' (2)

● Be aware of name
conflicts

● Be careful with
restore_command

Master Standby

WAL
Archive

Master Standby

WAL
Archive

WAL
Archive

pg_receivexlog

● Useful to leverage archiving

● Segments marked as .partial if not completed

● Should be used on archive host

● New features
– Support for timeline switches in 9.3

– Replication slots in 9.4

– Synchronous mode in 9.5

● Take advantage with cascading replication and standbys
(works <= 9.2)

pg_rewind (1)

● Resync an existing data directory without new
base backup
– Replug old master to existing cluster => “rewind it”

Timeline 1

Timeline 2

WAL history

Old master

Promoted slave

pg_rewind (2)
Timeline 1

Timeline 2

WAL history

Old master

Promoted slave

Reconnect NO!

Timeline 1

Timeline 2

Old master

Promoted slave

1) Rewind YES!
2) Replay

pg_rewind (3)

● Scan old master data folder
– Start from WAL fork point

– Record data blocks touched

● Copy all changed blocks from promoted slave to old
master

● Copy clog, conf files...

● Replay WAL from master, starting from last checkpoint
before WAL forked

● WAL format refactored for block tracking

pg_rewind (4)

● Largely faster than a new base backup
● Limitations

– Need wal_log_hints = on or data checksum

– Might not have all WAL for replay, can copy them
though

– No handling of timeline switches (WIP for 9.6)

min_wal_size and max_wal_size

● checkpoint_segments removed

● max_wal_size
– Maximum WAL size between checkpoints

– Soft limit

● min_wal_size
– Control of WAL segment recycling

– Useful to handle spikes in WAL usage

wal_compression?

● Not really WAL compression...

● Compression of full-page writes in WAL records
– Image of block saved in WAL during modification after

checkpoint.

● Compression with pglz
– CPU consumer (may want to switch to lz4 in future)

– Pushed in src/common, available for extensions
– https://github.com/michaelpq/pg_plugins/tree/master/compress_test

● Reduction of sequential I/O write induced by WAL at
the cost of some CPU.

wal_compression - performance

● Reduction of WAL size, for example:
– 15% for FPW with UUID datatype

– 27% for FPW with integers

● Reduction of recovery time, less segments to fetch.
– Local machine, 500MB of FPWs.

– UUID: 14.7s/15.3s

– Integers: 18.5s/21.8s

● Synchronous replication
– Bottleneck may be WAL record length when master and standby

hosts are close

– Contention with SyncRepLock

– Can increase overall output

wal_compression - security

● Compression rate of a page gives hints on
content

● Only PGC_SUSET

● Hide WAL position to lambda users
– pg_current_xlog_position()

– pg_current_xlog_insert_location()

– pg_last_xlog_receive_location()

– pg_last_xlog_replay_location()

REVOKE ALL ON FUNCTION pg_current_xlog_location()
 FROM PUBLIC;
-- etc.

wal_retrieve_retry_interval

● In 9.5, to control interval of time to fetch WAL
from source after failure, either WAL archive or
WAL receiver.

● Useful for archive recovery
– Limit requests to WAL archive host

– Accelerate detection of archived segment

Other things:
http://www.postgresql.org/docs/devel/static/release-9-5.html

Thanks!
Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

