How to get a feature committed?

Michael Paquier — VMware
2018/12/11, PGConf.Asia 2018

About the man

Michael Paquier.
French, based in Tokyo.

PostgreSQL contributor since 2009

- Some patches, some reviews and some bug fixes.
- Blogging.

— Committer since June 2018.

Working at VMware on PostgreSQL

- Packaging.

- Integration.

- Support.

Community

* Core database engine
e Steady, well-designed progress
* World-wide investment

* Code of conduct (since 2018)
https://www.postgresql.org/about/policies/coc/

DB engine Ranking (Dec 2018)

* https://db-engines.com/en/ranking

#

o A DD DN B

Engine
Oracle
MySQL
MSSQL
Postgres
MongoDB

Score
1283.22
1161.25
1040.34
460.64
378.62

Nov 2018
-17.89
+1.36
-11.21
+20.39
+9.14

Dec 2017
-58.32
-156.82
-123.14
+75.21
+47.85

https://db-engines.com/en/ranking

PaaP

PostgreSQL As A Product.

(F)Orcs must die!
- If you like it, still you can fork it.
- Long-term prospect gets better by investing in the core engine.

- Some folks are still able to live with this model with customer base (EDB
Postgres, Amazon, Greenplum).

Hard to contribute, initial time investment worth it long-term.
Hundreds of man years into the code from core developers.

Database engine

ACID

Free to use — BSD like

Open engineering.

Open to new and good ideas.

Highly pluggable: data types, plugins.
High code quality.

Committers

World-wide, shared-something distribution
28 in total: https://wiki.postgresqgl.org/wiki/Committers
North America (10) - US

Europe (12) - Czech, France, Finland, Ireland, Russia,
Sweden, UK

South America (1) - Chile
Asia (4) - India, Japan
Oceania (1) - NZ

https://wiki.postgresql.org/wiki/Committers

Development cycle

Schedule decided at PGCon, developer meeting:
https://wiki.postgresqgl.org/wiki/PgCon_2018 Developer Meeting

1 year, September to September, until GA
Roughly
Divided into two periods

- Feature submission and new developments
— Focus on stability

https://wiki.postgresql.org/wiki/PgCon_2018_Developer_Meeting

Release maintenance

One branch on git per major version

REL 11 STABLE =>v11
REL 10 STABLE => v10
REL9 6 STABLE =>Vv9.6

Only bug fixes, no new features
No change in system catalogs or WAL
EOL'd after 5 years

Commit fests

* 4~5 commit fests per development cycle.
e September to March.

* One month of break between each.

* Up to 250 patches.

Stabllity period

* First beta after last commit fest, in April

e Stability work:
https://wiki.postgresqgl.org/wiki/PostgreSQL 11 Open_Items

* Help in stabilizing things
- Testing, actual fixes
- Show involvement with community
— As Important as writing cool features

https://wiki.postgresql.org/wiki/PostgreSQL_11_Open_Items

Commit fest management

Up to 250 patches.

Few rejections.

A lot returned with feedback.

More patches bumped to next CF.

Authors forget!

Reviewers forget!

See follow-up graph (Credits: Dmitry Dolgov).

Number of items

Commitfest stats

140 -

120 4

100 +

80

60 1

40

20

—— Committed
—— Rejected
Moved to next CF

—— Returned with feedback

/V\/

10

11

12
CF number

Patch submission

Read guidelines
nttps://wiki.postgresql.org/wiki/Submitting_a Patch

Register it in commit fest (need community account)

f WIP, begin discussion first, draft patch fine.
Emall to pgsql-hackers.
Bug fixes also to pgsql-bugs.

Patch contents

The code itself — Comments.

Documentation!

- Explanation in email may not be enough.

— Self-contained docs are for the user at the end.

Tests:

— Isolation, regression, TAP?

— Should be designed to not be too costly, still hold value.
— Helps in reviewing feature.

Avoid non-ASCII characters.

Coding convention

* Signal handling, macros, error format, etc.
e Configuration in src/tools/editors/: vi, emacs.

 Documentation available
https://www.postgresgl.org/docs/devel/source.html

Regression tests

Main regression suite, src/test/regress/
Isolation test (concurrency), src/test/isolation/

Extension tests, src/test/modules/ and contrib/
https://www.postgresgl.org/docs/11/extend-pgxs.html

TAP tests

— src/test/perl/ for base modules.
— src/test/recovery/, authentication/, ssl/, etc.

PG TEST EXTRA='ss| |[dap kerberos'

https://www.postgresql.org/docs/11/extend-pgxs.html

Patch format

* Acceptable formats:
~ git diff
- git format-patch
e Add version in the file name

* Sometimes make sense to split into multiple commits
- Refactoring first
- Actual feature

e Personal viewpoint: as long as it can be applied cleanly | am fine.
- patch -pl < your-cool-stuff-v1.patch

CF manager

Deputy handling patch workflow
1 or more contributors.

Actions

- Tracking

— poking.

- mostly poking and vacuuming.

Done by seasoned hackers.

CF bot

Automatic check of submitted patches
— Linux

- Windows

URL: http://commitfest.cputube.org/

Divided by author:
http://commitfest.cputube.org/michael-paquier.html

Credits: Thomas Munro

http://commitfest.cputube.org/
http://commitfest.cputube.org/michael-paquier.html

Patch review (1)

* Flow
- Exchange between author(s) and reviewer(s).
- Patch marked as ready for committer.
- Committer looks at it, committing it or falling back.
- Committer has last word.

* 1 patch written = 1 review of equivalent difficulty.
* Reviews are as important as writing cool code.

Patch review (2)

Expect one or more rewrites of the patch.

Make sure to agree on the shape before
consuming time writing It.

Consensus is key.

A complicated patch will never finish in the
shape it was designed initially.

Conclusion

Be patient

Help others, take new challenges.

~1Xing bugs and doing maintenance helps as
well.

Remain polite, respect others.

Thanks!
Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

