Taking advantage of custom bgworkers

PostgreSQL Conference Europe 2013, Dublin, 2013/10/29
Michael Paquier, Member of Technical Staff — Postgre SQL

© 2013 VMware Inc. All rights reserved

About your lecturer

= Michael Paquier
* Working on Postgres for VMware
* Postgres community hacker and blogger
* Based in Tokyo

= Contacts:

* Twitter: @michaelpq
* Blog: http://michael.otacoo.com

* Email: mpaquier@vmware.com, michael@otacoo.com

Copyright (c) 2013 VMware, Inc. All Rights Reserved.

Agenda

= Introduction to background workers
= Implementation basics
= Good habits and examples

= What next?

Copyright (c) 2013 VMware, Inc. All Rights Reserved.

Introduction to background workers

Copyright (c) 2013 VMware, Inc. All Rights Reserved.

Bgworker?

= Plug-in infrastructure introduced in PostgreSQL 9.3

= Child process of postmaster
* Similar to a normal backend
* Control by postmaster, lives and dies with postmaster
* Signal control centralized under postmaster
* Assumed to run continuously as a daemon process

= Run customized code
* User-defined code of shared library loaded by PG core server

* Code loaded at server start

= Set of APIs for process-related plug-ins
* Customizable
* Extensible
* Adaptable
* Dangerous

Copyright (c) 2013 VMware, Inc. All Rights Reserved.

Features

= Several options
* Access to databases
* Access to shared memory

 Serial transactions
= User-defined parameters
= Some control for start/stop/restart of process
= Not necessarily visible in pg_stat_*
= Process listed with suffix bgworker: + SWORKER_NAME as name

$ ps -0 pid= -0 command= -p “pgrep -f "worker name™
$PID postgres: bgworker: worker name

Copyright (c) 2013 VMware, Inc. All Rights Reserved.

Development APIs

= All in bgworker.h

= Main management structure

typedef struct BackgroundWorker

{
char bgw name[BGW_MAXLEN];
int bgw_flags;
BgWorkerStartTime bgw_start _time;
int bgw_restart_time;

bgworker_main_type bgw_main;
Datum bgw_main_arg;
} BackgroundWorker;

= Other functions
* RegisterBackgroundWorker, register bgworker at load phase
* BackgroundWorkerBlockSignals/BackgroundWorkerUnblockSignals

* BackgroundWorkerlnitializeConnection, connect to a wanted database
* Only to catalogs if database name is NULL

Copyright (c) 2013 VMware, Inc. All Rights Reserved.

Development APIs (2)

= Flags - bgw_flags
« BGWORKER_SHMEM_ACCESS
* BGWORKER_BACKEND DATABASE CONNECTION

= Start moment — bgw_start
* BgWorkerStart_PostmasterStart
* BgWorkerStart_ConsistentState
* BgWorkerStart_RecoveryFinished
= Restart time in seconds - bgw_restart_time
« BGW_DEFAULT _RESTART_INTERVAL, 60s by default
* BGW_NEVER_RESTART
* Effective for *crashes™
= Documentation
* http://www.postgresql.org/docs/9.3/static/bgworker.html

Copyright (c) 2013 VMware, Inc. All Rights Reserved.

Implementation basics

Copyright (c) 2013 VMware, Inc. All Rights Reserved.

“Hello World” class example

= With most basic implementation
* Print once “Hello World”, then exit
* But this is not funny...

= Instead => output “Hello World” every 10s to the server logs

LOG: registering background worker "hello world"
LOG: loaded library "hello_world"

< =

$ ps -o pid= -0 command= -p ‘pgrep -f "hello world"
12642 postgres: bgworker: hello world

g

$ tail -n3 pg_log/postgresqgl-*.log | grep "Hello"

Process: 12642, timestamp: 2013-08-19 12:50:32.159 JSTLOG: Hello World!
Process: 12642, timestamp: 2013-08-19 12:50:42.169 JSTLOG: Hello World!
Process: 12642, timestamp: 2013-08-19 12:50:52.172 JSTLOG: Hello World!

Copyright (c) 2013 VMware, Inc. All Rights Reserved.

Example: Hello World (1)

= Headers!

/* Minimum set of headers */
#include "postgres.h”

#include "postmaster/bgworker.h”
#include "storage/ipc.h”

#include "storage/latch.h”
#include "storage/proc.h”
#include "fmgr.h”

[* Essential for shared libs! */
PG_MODULE_MAGIC;

/* Entry point of library loading */
void PG _init(void);

[* Signal handling */
static volatile sig_atomic_t got_sigterm = false;

Copyright (c) 2013 VMware, Inc. All Rights Reserved.

Example: Hello World (2)

= |nitialization with _PG_init()

void

_PG_init(void)

{
BackgroundWorker worker;
worker.bgw_flags = BGWORKER_SHMEM_ACCESS;
worker.bgw_start_time = BgWorkerStart RecoveryFinished;
worker.ogw_main = hello_main;
snprintf(worker.ogw _name, BGW_MAXLEN, "hello world");
worker.bgw_restart time = BGW_NEVER RESTART;
worker.ogw _main_arg = (Datum) O;
RegisterBackgroundWorker(&worker);

Copyright (c) 2013 VMware, Inc. All Rights Reserved.

Example: Hello World (3)

= Main loop

static void
hello_main(Datum main_arg)
{
pgsignal(SIGTERM, hello_sigterm);
BackgroundWorkerUnblockSignals();
while (!got_sigterm)
{
int rc;
rc = WaitLatch(&MyProc->procLatch,
WL _LATCH_SET | WL_TIMEOUT | WL _POSTMASTER DEATH,
10000L);
ResetLatch(&MyProc->procLatch);
if (rc & WL_POSTMASTER DEATH)
proc_exit(1);
elog(LOG, "Hello World!"); /* Say Hello to the world */
}

proc_exit(0);

Copyright (c) 2013 VMware, Inc. All Rights Reserved.

Example: Hello World (4)

= SIGTERM handler

static void hello_sigterm(SIGNAL_ARGS)
{
int save_errno = errno;
got_sigterm = true;
if (MyProc)
SetLatch(&MyProc->procLatch);
errno = save_errno;

}
= Makefile

MODULES = hello_world

PG_CONFIG = pg_config

PGXS := $(shell $(PG_CONFIG) —pgxs)
include $(PGXS)

Copyright (c) 2013 VMware, Inc. All Rights Reserved.

Example: Hello World — Conclusion

= Good things
* Postmaster death correctly managed
* Management of SIGTERM
e Use of a Latch

= And not-so-good things
* Avoid shared memory connection if possible

* Might lead to memory corruption
* Use a private latch

* Avoid database connection if not necessary
* Management of SIGHUP

Copyright (c) 2013 VMware, Inc. All Rights Reserved.

Just don’t forget that (1)

= Consistency with existing backend code

* Don’t reinvent the wheel!

= Reload parameters
* Handling of SIGHUP and ProcessConfigFile important!
* Postmaster sends signal to workers, but workers should handle it properly

= Test your code before putting it in production, especially if...
* bgworker interacts with the OS/database

* Access to shared memory used

= Security
* That’s C!
* Door to security holes

* Ports opened on a bgworker

* Interactions with other components

* Easy to break server...

Copyright (c) 2013 VMware, Inc. All Rights Reserved.

Just don’t forget that (2)

= Use a private latch if possible

= Limit access to shared memory
* Flag BGWORKER _SHMEM_ ACCESS
* Don’t play with security

= Limit access to database

* Flag BGWORKER_SHMEM_ACCESS |
BGWORKER_BACKEND_DATABASE_CONNECTION

Do NOT use pg_usleep, does not stop at postmaster death
= Load with PG _init() and PG_MODULE_MAGIC to enable it!

= Headers necessary to survive

#include "postgres.h”

#include "postmaster/bgworker.h”
#include "storage/ipc.h”

#include "fmgr.n”

Copyright (c) 2013 VMware, Inc. All Rights Reserved.

Just don’t forget that (3)

= No physical limit of bgworkers allowed
* MaxBackends calculated from number of registered workers
* Lot of bgworkers = risk of OOM on standby
* Be sure to not have an extravagant number of workers
* Fixed in 9.4~ with max_worker_processes

= Code loading
» Set shared_preload_libraries in postgresql.conf
* Entry pointis PG _init()
* Register your worker

= Set signal functions, then unblock signals

pgsignal(SIGHUP, my_worker_sighup);
pgsignal(SIGTERM, my_worker_sigterm);
BackgroundWorkerUnblockSignals();

Copyright (c) 2013 VMware, Inc. All Rights Reserved.

Just don’t forget that (4)

= One last thing... Limitations for one-time tasks

* Workers designed to always restart, like daemons

* Possible to combine NEVER RESTART with exit code != 0 for definite stop,
not that intuitive

* Cannot start workers at will, always at server startup
* When stopped like that, can never be restarted

Copyright (c) 2013 VMware, Inc. All Rights Reserved.

Good habits and examples

Copyright (c) 2013 VMware, Inc. All Rights Reserved.

What should do a bgworker?

= Like a daemon process
* Interact with external components for an interval of time
* Monitor activity inside and outside server
* Check slave status (trigger an email if late on replay?)

= Like a Postgres backend
* Run transactions, queries and interact with databases
* Receive, proceed signal
* Proceed signals
* Use existing infrastructure of server
* Run statistics
* Other things not listed here

Copyright (c) 2013 VMware, Inc. All Rights Reserved.

Custom parameters

= Loaded in PG init
= Advice for name convention

* SWORKER_NAME.$PARAMETER_NAME
* Not mandatory though... Feel free to mess up everything

= Separate config file? void DefineCustomIntVariable(
const char *name,

const char *short_desc,
const char *long_desc,

* APlIs in guc.h int *valueAddr,

* Int, float, bool, enum, string ::I Enoirc:% ?L“ee’

* Type: sighup, postmaster int maxValue,

GucContext context,

int flags,

GuclIntCheckHook check hook,
GuclntAssignHook assign_hook,
GucShowHook show hook);

= Same control granularity as
server

Copyright (c) 2013 VMware, Inc. All Rights Reserved.

Timestamps

= Timestamps in transactions
* Set in postgres.c, not in worker code!
* Calls to SetCurrentStatementStartTimestamp()

* *Before* transaction start

* And *Before* extra query execution

[* Start transaction */
SetCurrentStatementStartTimestamp()
StartTransactionCommand();

/* Run queries (not necessary for 15t one in transaction) */
SetCurrentStatementStartTimestamp()
[... Run queries ...]

Copyright (c) 2013 VMware, Inc. All Rights Reserved.

Statistics

= Mainly calls to pgstat_report_activity
* STATE_RUNNING with query string before running query
* STATE_IDLE when transaction commits
* Activity mainly reported in pg_stat_activity
= Advantage of reporting stats
* Good for maintenance processes
* Check if process is not stuck
* For database processes only
= When not necessary?
 Utility workers (no direct interaction with server)
* Cloud apps, users have no idea of what is running for them here

= APIs of pgstat.h

Copyright (c) 2013 VMware, Inc. All Rights Reserved.

Transaction flow

= All the APIs of xact.c

[* Start transaction */
SetCurrentStatementStartTimestamp()
StartTransactionCommand();

SPI_connect();
PushActiveSnapshot(GetTransactionSnapshot());

/* Run queries */
SetCurrentStatementStartTimestamp()
pgstat_report_activity(STATE_ RUNNING, $QUERY)
[... Run queries ...]

/[* Finish */

SPI_finish();

PopActiveSnapshot();
CommitTransactionCommand();
pgstat_report_activity(STATE_IDLE, NULL);

Copyright (c) 2013 VMware, Inc. All Rights Reserved.

Execute queries (1)

= With SPI, common facility of all Postgres modules and core

= Functions in executor/spi.h
* SPI_connect to initialize facility
* SPI_finish to clean up
* SPI_execute to run query
* SPI_getbinval to fetch tuple values

" Prepared queries
* SPI_prepare to prepare a query

* SP| _execute plan to execute this plan
* etc.

= Use and abuse of Stringinfo and StringinfoData for query strings ©

Copyright (c) 2013 VMware, Inc. All Rights Reserved.

Execute queries (2)

= Common way of fetching tuple results

[* Execute query */
ret = SPI_execute(“SELECT intval, strval FROM table”,
true, 0);
if (ret = SPI_OK_SELECT)
elog(FATAL, "Fatal hit...”);
[* Fetch data */
for (i =0; i < SPI_processed; i++)
{
intValue = DatumGetInt32(
SPI_getbinval(SPI _tuptable->vals]i],
SPI _tuptable->tupdesc,
1, &isnull));
strValue = DatumGetCString(
SPI_getbinval(SPI _tuptable->vals]i],
SPI tuptable->tupdesc,
2, &isnull));

Copyright (c) 2013 VMware, Inc. All Rights Reserved.

Example - kill automatically idle connections

= Use of the following things
* Custom parameters
* Timestamps
* Transaction
* SPI calls

= Query used by worker process

SELECT pid, datname, usename,
pg_terminate backend(pid) as status
FROM pg_stat_activity
WHERE now() - state_change > interval 'SINTERVAL s' AND
pid = pg_backend_pid();

= Interval customizable with parameter
* Name: kill_idle.max_idle_time

* Default: 5s, Max value: 1h

Copyright (c) 2013 VMware, Inc. All Rights Reserved.

Next example, cut automatically idle connections

= Worker process

$ ps -o pid= -0 command= -p ‘pgrep -f "kill_idle™
23460 postgres: bgworker: Kill_idle

= Disconnection activity in logs

$ tail -n 2 postgresql-*.log | grep Disconnected
LOG: Disconnected idle connection: PID 23564 mpaquier/mpaquier/none
LOG: Disconnected idle connection: PID 23584 postgres/mpaquier/none

= Statistic activity

postgres=# SELECT datname, usename, substring(query, 1, 38)
FROM pg_stat_activity WHERE pid = 23460;

dathame | usename | substring

__________ e e e e e e e

postgres | mpaquier | SELECT pid, pg_terminate backend(pid)

(1 row)

Copyright (c) 2013 VMware, Inc. All Rights Reserved.

More material?

= Documentation
* http://www.postgresqgl.org/docs/9.3/static/bgworker.html
= Bgworker modules popping around

* Mongres:
* Get MongoDB queries and pass them to Postgres

* https://github.com/umitanuki/mongres

 contrib/worker_spi
* All the basics in one module
* 9.4~ stuff also included on master

* A future pg_cron?

* Examples of today and more => pg_workers
* https://github.com/michaelpg/pg_workers

* kill_idle https://github.com/michaelpg/pg_workers/tree/master/kill_idle

* hello_world https://github.com/michaelpq/pg_workers/tree/master/hello_world

* Under PostgreSQL license

Copyright (c) 2013 VMware, Inc. All Rights Reserved.

What next?

Copyright (c) 2013 VMware, Inc. All Rights Reserved.

Bgworkers, and now?

= With stable 9.3 APIs, wide adoption expected
= Many possibilities

* Statistics-related processes

* Maintenance, cron tasks

* Reindex automatically invalid indexes

* Kill inactive connections after certain duration (pg_stat_activity +
pg_terminate_backend) combo

= HA agents, Pacemaker, Corosync, watchdogs

= Health checker
* Disk control: Stop server if free disk space <= X%
* Automatic update of parameter depending on environment (cloud-related)

= License checker: Ideal for Postgres server controlled in cloud?

Copyright (c) 2013 VMware, Inc. All Rights Reserved.

Bgworkers, and in core?

= Dynamic bgworkers — new sets of APIs in 9.4~

* Infrastructure for parallel query processing
* Backward compatible with 9.3
 Start/stop/restart at will
* Main worker function loaded externally
* No need of static loading
* Not adapted for daemon processes
* Dynamic area of shared memory for communication between backends
* Parallel sequential scan
* Parallel sort
* Transaction snapshots

Copyright (c) 2013 VMware, Inc. All Rights Reserved.

Thanks!
Questions?

Copyright (c) 2013 VMware, Inc. All Rights Reserved.

