Taking advantage of custom bgworkers

PostgreSQL Conference Europe 2013, Dublin, 2013/10/29
Michael Paquier, Member of Technical Staff — Postgre SQL

© 2013 VMware Inc. All rights reserved



About your lecturer

= Michael Paquier
* Working on Postgres for VMware
* Postgres community hacker and blogger
* Based in Tokyo

= Contacts:

* Twitter: @michaelpq
* Blog: http://michael.otacoo.com

* Email: mpaquier@vmware.com, michael@otacoo.com
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Agenda

= Introduction to background workers
= Implementation basics
= Good habits and examples

= What next?
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Introduction to background workers
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Bgworker?

= Plug-in infrastructure introduced in PostgreSQL 9.3

= Child process of postmaster
* Similar to a normal backend
* Control by postmaster, lives and dies with postmaster
* Signal control centralized under postmaster
* Assumed to run continuously as a daemon process

= Run customized code
* User-defined code of shared library loaded by PG core server

* Code loaded at server start

= Set of APIs for process-related plug-ins
* Customizable
* Extensible
* Adaptable
* Dangerous
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Features

= Several options
* Access to databases
* Access to shared memory

 Serial transactions
= User-defined parameters
= Some control for start/stop/restart of process
= Not necessarily visible in pg_stat_*
= Process listed with suffix bgworker: + SWORKER_NAME as name

$ ps -0 pid= -0 command= -p “pgrep -f "worker name™
$PID postgres: bgworker: worker name
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Development APIs

= All in bgworker.h

= Main management structure

typedef struct BackgroundWorker

{
char bgw name[BGW_MAXLEN];
int bgw_flags;
BgWorkerStartTime bgw_start _time;
int bgw_restart_time;

bgworker_main_type bgw_main;
Datum bgw_main_arg;
} BackgroundWorker;

= Other functions
* RegisterBackgroundWorker, register bgworker at load phase
* BackgroundWorkerBlockSignals/BackgroundWorkerUnblockSignals

* BackgroundWorkerlnitializeConnection, connect to a wanted database
* Only to catalogs if database name is NULL
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Development APIs (2)

= Flags - bgw_flags
« BGWORKER_SHMEM_ACCESS
* BGWORKER_BACKEND DATABASE CONNECTION

= Start moment — bgw_start
* BgWorkerStart_PostmasterStart
* BgWorkerStart_ConsistentState
* BgWorkerStart_RecoveryFinished
= Restart time in seconds - bgw_restart_time
« BGW_DEFAULT _RESTART_INTERVAL, 60s by default
* BGW_NEVER_RESTART
* Effective for *crashes™
= Documentation
* http://www.postgresql.org/docs/9.3/static/bgworker.html
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Implementation basics
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“Hello World” class example

= With most basic implementation
* Print once “Hello World”, then exit
* But this is not funny...

= Instead => output “Hello World” every 10s to the server logs

LOG: registering background worker "hello world"
LOG: loaded library "hello_world"

< =

$ ps -o pid= -0 command= -p ‘pgrep -f "hello world"
12642 postgres: bgworker: hello world

g

$ tail -n3 pg_log/postgresqgl-*.log | grep "Hello"

Process: 12642, timestamp: 2013-08-19 12:50:32.159 JSTLOG: Hello World!
Process: 12642, timestamp: 2013-08-19 12:50:42.169 JSTLOG: Hello World!
Process: 12642, timestamp: 2013-08-19 12:50:52.172 JSTLOG: Hello World!
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Example: Hello World (1)

= Headers!

/* Minimum set of headers */
#include "postgres.h”

#include "postmaster/bgworker.h”
#include "storage/ipc.h”

#include "storage/latch.h”
#include "storage/proc.h”
#include "fmgr.h”

[* Essential for shared libs! */
PG_MODULE_MAGIC;

/* Entry point of library loading */
void PG _init(void);

[* Signal handling */
static volatile sig_atomic_t got_sigterm = false;
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Example: Hello World (2)

= |nitialization with _PG_init()

void

_PG_init(void)

{
BackgroundWorker worker;
worker.bgw_flags = BGWORKER_SHMEM_ACCESS;
worker.bgw_start_time = BgWorkerStart RecoveryFinished;
worker.ogw_main = hello_main;
snprintf(worker.ogw _name, BGW_MAXLEN, "hello world");
worker.bgw_restart time = BGW_NEVER RESTART;
worker.ogw _main_arg = (Datum) O;
RegisterBackgroundWorker(&worker);
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Example: Hello World (3)

= Main loop

static void
hello_main(Datum main_arg)
{
pgsignal(SIGTERM, hello_sigterm);
BackgroundWorkerUnblockSignals();
while (!got_sigterm)
{
int rc;
rc = WaitLatch(&MyProc->procLatch,
WL _LATCH_SET | WL_TIMEOUT | WL _POSTMASTER DEATH,
10000L);
ResetLatch(&MyProc->procLatch);
if (rc & WL_POSTMASTER DEATH)
proc_exit(1);
elog(LOG, "Hello World!"); /* Say Hello to the world */
}

proc_exit(0);
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Example: Hello World (4)

= SIGTERM handler

static void hello_sigterm(SIGNAL_ARGS)
{
int save_errno = errno;
got_sigterm = true;
if (MyProc)
SetLatch(&MyProc->procLatch);
errno = save_errno;

}
= Makefile

MODULES = hello_world

PG_CONFIG = pg_config

PGXS := $(shell $(PG_CONFIG) —pgxs)
include $(PGXS)
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Example: Hello World — Conclusion

= Good things
* Postmaster death correctly managed
* Management of SIGTERM
e Use of a Latch

= And not-so-good things
* Avoid shared memory connection if possible

* Might lead to memory corruption
* Use a private latch

* Avoid database connection if not necessary
* Management of SIGHUP
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Just don’t forget that (1)

= Consistency with existing backend code

* Don’t reinvent the wheel!

= Reload parameters
* Handling of SIGHUP and ProcessConfigFile important!
* Postmaster sends signal to workers, but workers should handle it properly

= Test your code before putting it in production, especially if...
* bgworker interacts with the OS/database

* Access to shared memory used

= Security
* That’s C!
* Door to security holes

* Ports opened on a bgworker

* Interactions with other components

* Easy to break server...
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Just don’t forget that (2)

= Use a private latch if possible

= Limit access to shared memory
* Flag BGWORKER _SHMEM_ ACCESS
* Don’t play with security

= Limit access to database

* Flag BGWORKER_SHMEM_ACCESS |
BGWORKER_BACKEND_DATABASE_CONNECTION

Do NOT use pg_usleep, does not stop at postmaster death
= Load with PG _init() and PG_MODULE_MAGIC to enable it!

= Headers necessary to survive

#include "postgres.h”

#include "postmaster/bgworker.h”
#include "storage/ipc.h”

#include "fmgr.n”
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Just don’t forget that (3)

= No physical limit of bgworkers allowed
* MaxBackends calculated from number of registered workers
* Lot of bgworkers = risk of OOM on standby
* Be sure to not have an extravagant number of workers
* Fixed in 9.4~ with max_worker_processes

= Code loading
» Set shared_preload_libraries in postgresql.conf
* Entry pointis PG _init()
* Register your worker

= Set signal functions, then unblock signals

pgsignal(SIGHUP, my_worker_sighup);
pgsignal(SIGTERM, my_worker_sigterm);
BackgroundWorkerUnblockSignals();
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Just don’t forget that (4)

= One last thing... Limitations for one-time tasks

* Workers designed to always restart, like daemons

* Possible to combine NEVER RESTART with exit code != 0 for definite stop,
not that intuitive

* Cannot start workers at will, always at server startup
* When stopped like that, can never be restarted
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Good habits and examples
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What should do a bgworker?

= Like a daemon process
* Interact with external components for an interval of time
* Monitor activity inside and outside server
* Check slave status (trigger an email if late on replay?)

= Like a Postgres backend
* Run transactions, queries and interact with databases
* Receive, proceed signal
* Proceed signals
* Use existing infrastructure of server
* Run statistics
* Other things not listed here
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Custom parameters

= Loaded in PG init
= Advice for name convention

* SWORKER_NAME.$PARAMETER_NAME
* Not mandatory though... Feel free to mess up everything

= Separate config file? void DefineCustomIntVariable(
const char *name,

const char *short_desc,
const char *long_desc,

* APlIs in guc.h int *valueAddr,

* Int, float, bool, enum, string ::I Enoirc:% ?L“ee’

* Type: sighup, postmaster int maxValue,

GucContext context,

int flags,

GuclIntCheckHook check hook,
GuclntAssignHook assign_hook,
GucShowHook show hook);

= Same control granularity as
server
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Timestamps

= Timestamps in transactions
* Set in postgres.c, not in worker code!
* Calls to SetCurrentStatementStartTimestamp()

* *Before* transaction start

* And *Before* extra query execution

[* Start transaction */
SetCurrentStatementStartTimestamp()
StartTransactionCommand();

/* Run queries (not necessary for 15t one in transaction) */
SetCurrentStatementStartTimestamp()
[... Run queries ...]
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Statistics

= Mainly calls to pgstat_report_activity
* STATE_RUNNING with query string before running query
* STATE_IDLE when transaction commits
* Activity mainly reported in pg_stat_activity
= Advantage of reporting stats
* Good for maintenance processes
* Check if process is not stuck
* For database processes only
= When not necessary?
 Utility workers (no direct interaction with server)
* Cloud apps, users have no idea of what is running for them here

= APIs of pgstat.h
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Transaction flow

= All the APIs of xact.c

[* Start transaction */
SetCurrentStatementStartTimestamp()
StartTransactionCommand();

SPI_connect();
PushActiveSnapshot(GetTransactionSnapshot());

/* Run queries */
SetCurrentStatementStartTimestamp()
pgstat_report_activity(STATE_ RUNNING, $QUERY)
[... Run queries ...]

/[* Finish */

SPI_finish();

PopActiveSnapshot();
CommitTransactionCommand();
pgstat_report_activity(STATE_IDLE, NULL);
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Execute queries (1)

= With SPI, common facility of all Postgres modules and core

= Functions in executor/spi.h
* SPI_connect to initialize facility
* SPI_finish to clean up
* SPI_execute to run query
* SPI_getbinval to fetch tuple values

" Prepared queries
* SPI_prepare to prepare a query

* SP| _execute plan to execute this plan
* etc.

= Use and abuse of Stringinfo and StringinfoData for query strings ©
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Execute queries (2)

= Common way of fetching tuple results

[* Execute query */
ret = SPI_execute(“SELECT intval, strval FROM table”,
true, 0);
if (ret = SPI_OK_SELECT)
elog(FATAL, "Fatal hit...”);
[* Fetch data */
for (i =0; i < SPI_processed; i++)
{
intValue = DatumGetInt32(
SPI_getbinval(SPI _tuptable->vals]i],
SPI _tuptable->tupdesc,
1, &isnull));
strValue = DatumGetCString(
SPI_getbinval(SPI _tuptable->vals]i],
SPI tuptable->tupdesc,
2, &isnull));
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Example - kill automatically idle connections

= Use of the following things
* Custom parameters
* Timestamps
* Transaction
* SPI calls

= Query used by worker process

SELECT pid, datname, usename,
pg_terminate backend(pid) as status
FROM pg_stat_activity
WHERE now() - state_change > interval 'SINTERVAL s' AND
pid = pg_backend_pid();

= Interval customizable with parameter
* Name: kill_idle.max_idle_time

* Default: 5s, Max value: 1h
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Next example, cut automatically idle connections

= Worker process

$ ps -o pid= -0 command= -p ‘pgrep -f "kill_idle™
23460 postgres: bgworker: Kill_idle

= Disconnection activity in logs

$ tail -n 2 postgresql-*.log | grep Disconnected
LOG: Disconnected idle connection: PID 23564 mpaquier/mpaquier/none
LOG: Disconnected idle connection: PID 23584 postgres/mpaquier/none

= Statistic activity

postgres=# SELECT datname, usename, substring(query, 1, 38)
FROM pg_stat_activity WHERE pid = 23460;

dathame | usename | substring

__________ e e e e e e e

postgres | mpaquier | SELECT pid, pg_terminate backend(pid)

(1 row)
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More material?

= Documentation
* http://www.postgresqgl.org/docs/9.3/static/bgworker.html
= Bgworker modules popping around

* Mongres:
* Get MongoDB queries and pass them to Postgres

* https://github.com/umitanuki/mongres

 contrib/worker_spi
* All the basics in one module
* 9.4~ stuff also included on master

* A future pg_cron?

* Examples of today and more => pg_workers
* https://github.com/michaelpg/pg_workers

* kill_idle https://github.com/michaelpg/pg_workers/tree/master/kill_idle

* hello_world https://github.com/michaelpq/pg_workers/tree/master/hello_world

* Under PostgreSQL license
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What next?
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Bgworkers, and now?

= With stable 9.3 APIs, wide adoption expected
= Many possibilities

* Statistics-related processes

* Maintenance, cron tasks

* Reindex automatically invalid indexes

* Kill inactive connections after certain duration (pg_stat_activity +
pg_terminate_backend) combo

= HA agents, Pacemaker, Corosync, watchdogs

= Health checker
* Disk control: Stop server if free disk space <= X%
* Automatic update of parameter depending on environment (cloud-related)

= License checker: Ideal for Postgres server controlled in cloud?
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Bgworkers, and in core?

= Dynamic bgworkers — new sets of APIs in 9.4~

* Infrastructure for parallel query processing
* Backward compatible with 9.3
 Start/stop/restart at will
* Main worker function loaded externally
* No need of static loading
* Not adapted for daemon processes
* Dynamic area of shared memory for communication between backends
* Parallel sequential scan
* Parallel sort
* Transaction snapshots
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Thanks!
Questions?
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