
© 2013 VMware Inc. All rights reserved

Understanding logical decoding and
replication
Postgres Open, Chicago, 2014/09/19
Michael Paquier, Member of Technical Staff – PostgreSQL

2 Copyright (c) 2013 VMware, Inc. All Rights Reserved.

About your lecturer

§ Michael Paquier
• Working on Postgres for Vmware
• Community hacker and blogger

•  Based in Tokyo

§  Contacts:
•  Twitter: @michaelpq

•  Blog: http://michael.otacoo.com

•  Email: mpaquier@vmware.com, michael@otacoo.com

3 Copyright (c) 2013 VMware, Inc. All Rights Reserved.

Agenda

§  Introduction to logical decoding
§ Output decoders…
§ … And logical receivers
§  And then…

4 Copyright (c) 2013 VMware, Inc. All Rights Reserved.

Introduction to logical decoding

5 Copyright (c) 2013 VMware, Inc. All Rights Reserved.

Before coming to it…

§ WAL = Write-ahead Log
•  Internal journal of Postgres to maintain data integrity
• Used for recovery, archives, etc.

•  LSN = Log Sequence Number, or WAL record position
•  http://www.postgresql.org/docs/9.4/static/wal-intro.html

§ WAL sender
•  Process on root node sending WAL stream

• On master or standby (cadcading)

§ WAL receiver
•  Process on standby node receiving WAL stream

• On standby

§  Replication protocol, set of commands to control replication
• Used internally for replication, externally as well with replication connections

•  http://www.postgresql.org/docs/devel/static/protocol-replication.html

6 Copyright (c) 2013 VMware, Inc. All Rights Reserved.

What is logical decoding?

§  Newly introduced in 9.4 (release Q4 of 2014)
§  Plugin infrastructure

• Customizable
•  Extensible

•  Adaptable
• No need to modify core code

§  Use cases
• Replication solutions (Slony…)

•  Auditing
• Online upgrade

§  Result of hundreds of emails
§  Introduction of many new features and principles…

7 Copyright (c) 2013 VMware, Inc. All Rights Reserved.

Concept of logical decoding

§  Decode WAL to get DML changes (INSERT, DELETE and UPDATE)
§  Shape changes as desired and stream them
§ Get changes and apply them on a remote source

WAL Data

Decode
WAL

Postgres

Remote source

Receiver

8 Copyright (c) 2013 VMware, Inc. All Rights Reserved.

Replication slots (1)

§  Store WAL as long as changes are not consumed
§  Can be used by one single WAL sender at the same time
§  Careful: space consumption for pg_xlog partition if used
§  System view pg_replication_slots
§  Physical slots

•  System-wide, conflict resolution with oldestXmin in feedback message
•  For recovery: primary_slot_name in recovery.conf

• Creation:
•  SELECT pg_create_physical_replication_slot(‘slot_name’)
•  Replication protocol: CREATE_REPLICATION_SLOT foo PHYSICAL

• Configuration: max_replication_slots > 0

• Drop:
•  SELECT pg_drop_replication_slot(‘slot_name’)
•  Replication protocol DROP_REPLICATION_SLOT foo

9 Copyright (c) 2013 VMware, Inc. All Rights Reserved.

Replication slots (2)
§  Logical

•  Attached to a database
• Need a decoder plugin to reshape changes when requested

• Cannot be used for recovery
• Creation

•  pg_create_logical_replication_slot(‘slot_name’, ‘plugin_name’)
•  CREATE_REPLICATION_SLOT foo LOGICAL plugin

• Configuration: max_replication_slots > 0 + wal_level = logical
=# SELECT * FROM
 pg_create_physical_replication_slot('physical_slot');
 slot_name | xlog_position
 -----------------+---------------
 physical_slot | null
(1 row)
=# SELECT * FROM
 pg_create_logical_replication_slot('logical_slot', 'test_decoding');
 slot_name | xlog_position
 ----------------+---------------
 logical_slot | 0/5000100
 (1 row)

10 Copyright (c) 2013 VMware, Inc. All Rights Reserved.

Exported snapshots – Obtain it

§  Can be used to retrieve consistent image of database
§  Export with replication connection

•  In result of CREATE_REPLICATION_SLOT
•  Available for duration of replication connection

§  Export with vanilla connection
•  SELECT pg_export_snapshot();
•  Available for duration of transaction calling function, not connection!

§  No snapshot available with pg_create_logical_replication_slot()
§ Maintain connection/transaction for duration as long as necessary

11 Copyright (c) 2013 VMware, Inc. All Rights Reserved.

Exported snapshots – Dump consistent data

§  Single transaction
§  Use with SET TRANSACTION SNAPSHOT
§  Limitations

• Need to be tightly linked with application
•  pg_dump offers no real solutions in 9.4

$ psql “replication=database dbname=postgres”
=# CREATE_REPLICATION_SLOT logical_slot
 LOGICAL test_decoding;
-[RECORD 1]----+--------------
 slot_name | logical_slot
 consistent_point | 0/5000E58
 snapshot_name | 000003F0-1
 output_plugin | test_decoding

$ psql postgres
=# BEGIN ISOLATION LEVEL
 REPEATABLE READ;
BEGIN
=# SET TRANSACTION
 SNAPSHOT '000003F0-1’;
SET
=# [stuff]
=# COMMIT;

1) Export Snapshot 2) Fetch data

12 Copyright (c) 2013 VMware, Inc. All Rights Reserved.

Output decoder

§  Decodes WAL from logical replication slot
§  Plugin to be added on server side
§  Used in WAL sender if changes streamed with replication protocol
§ Output can be queried with SQL functions
§  1 change per tuple modified

• Good for OLTP and short transactions
•  Less for warehouse, bulk writes…

§  Postgres ships one: test_decoding
§  Can use custom options improving output granularity
§  Documentation:

•  http://www.postgresql.org/docs/9.4/static/logicaldecoding-output-plugin.html

13 Copyright (c) 2013 VMware, Inc. All Rights Reserved.

REPLICA IDENTITY

§  Change information verbosity of old rows being updated or deleted
§  Different modes

• DEFAULT, use PRIMARY KEY if any
• USING INDEX index_name

•  Unique, not partial, no expression, no NOT NULL columns
•  Same as DEFAULT with PRIMARY KEY

•  ALL, old values of all columns
• NOTHING

•  No values recorded
•  Same as DEFAULT without PRIMARY KEY

§  SQL level
• CREATE TABLE sets it to DEFAULT

•  ALTER TABLE to change it

14 Copyright (c) 2013 VMware, Inc. All Rights Reserved.

Logical change receiver

§  Runs on client side
•  Anything able to connect to Postgres node with replication protocol
•  In short, something able to fetch changes and process them

• Can use options of decoder for custom output

§  SQL interface
•  Textual format

•  pg_logical_slot_get_changes to consume
•  pg_logical_slot_peek_changes to look at

•  Binary format
•  pg_logical_slot_get_binary_changes to consume
•  pg_logical_slot_peek_binary_changes to look at

§  Replication connection => mainly COPY protocol

15 Copyright (c) 2013 VMware, Inc. All Rights Reserved.

Logical decoding and replication

§  Replication connection
•  Extended “replication” with mode “database” in 9.4
• Need application_name for pg_stat_replication, dbname

•  Example:
host=$IP replication=database dbname=my_db application_name=my_app

§ Queries
•  IDENTIFY_SYSTEM (to get current LSN write position, timeline, system ID or

connected database)
• CREATE_REPLICATION_SLOT

• DROP_REPLICATION_SLOT
•  START_REPLICATION SLOT slot_name LOGICAL [start_pos | 0/0]

§  Position 0/0
•  oldest LSN position available in slot.

• Not InvalidXLogRecPtr…

16 Copyright (c) 2013 VMware, Inc. All Rights Reserved.

Logical decoding and replication (2)

§  Use application_name in connection string
§  standby_synchronous_names on master for synchronous receiver
§  Feedback to master!

•  To release WAL files on a slot
•  flush_position, write_position useful (depends on synchronous_commit)

• Message format
•  ‘r’ for message type
•  8 bytes for write position (XLogRecPtr)
•  8 bytes for flush position (XLogRecPtr)
•  8 bytes for applied/replay position (XLogRecPtr)
•  8 bytes for timestamp
•  1 byte to request reply from server

17 Copyright (c) 2013 VMware, Inc. All Rights Reserved.

Output decoders…

18 Copyright (c) 2013 VMware, Inc. All Rights Reserved.

Basics

§  Set of callback functions for events:
•  Startup (Initialization when opening slot)
•  Shutdown

•  BEGIN
• COMMIT

•  Tuple change triggered by INSERT, UPDATE, DELETE

§  Example with decoder generating raw queries
§  Available as decoder_raw here (PostgreSQL license):

•  git clone https://github.com/michaelpq/pg_plugins
•  cd pg_plugins/decoder_raw

19 Copyright (c) 2013 VMware, Inc. All Rights Reserved.

Loading callbacks

§  Loaded by _PG_output_plugin_init
•  Similar to _PG_init, but for decoder context

§  Startup and shutdown can be NULL
§  Begin, commit and change mandatory

Void
_PG_output_plugin_init(OutputPluginCallbacks *cb)
{
 cb->startup_cb = decoder_raw_startup;
 cb->begin_cb = decoder_raw_begin_txn;
 cb->change_cb = decoder_raw_change;
 cb->commit_cb = decoder_raw_commit_txn;
 cb->shutdown_cb = decoder_raw_shutdown;
}

20 Copyright (c) 2013 VMware, Inc. All Rights Reserved.

Callback - Initialization

§  Initialize context and options
§  Use ctx->output_plugin_private for parameters
§ Output format: OUTPUT_PLUGIN_[BINARY|TEXTUAL]_OUTPUT

static void
decoder_raw_startup(LogicalDecodingContext *ctx,
 OutputPluginOptions *opt,
 bool is_init)
{
 ListCell *option;
 DecoderRawData *data;
 data = palloc(sizeof(TestDecodingData));
 data->context = AllocSetContextCreate(ctx->context,
 "Raw decoder context”, …);

 /* Options */
 foreach(option, ctx->output_plugin_options)
 {
 DefElem *elem = lfirst(option);
 […blah…]
 }
}

21 Copyright (c) 2013 VMware, Inc. All Rights Reserved.

Callbacks - Shutdown

§  Called each time replication connection ends…
§ Or decoder context not needed
§  Removal of initialization things

static void
decoder_raw_shutdown(LogicalDecodingContext *ctx)
{
 DecoderRawData *data = ctx->output_plugin_private;

 /* cleanup our own resources via memory context reset */
 MemoryContextDelete(data->context);
}

22 Copyright (c) 2013 VMware, Inc. All Rights Reserved.

Callbacks - BEGIN

§  Called each time decoding is done for a single record
§  Somewhat similar to BEGIN transaction
§  ReorderBufferTXN with information of transaction (txid, etc.)
§  StringInfo of ctx->out
§ OutputPluginPrepareWrite to prepare the field
§ OutputPluginWrite to write change

static void
decoder_raw_begin_txn(LogicalDecodingContext *ctx,
 ReorderBufferTXN *txn)
{
 OutputPluginPrepareWrite(ctx, true);
 appendStringInfoString(ctx->out, "BEGIN;");
 OutputPluginWrite(ctx, true);
}

23 Copyright (c) 2013 VMware, Inc. All Rights Reserved.

Callbacks - COMMIT

§  Called each time decoding is finished for a single record
§  Similar to COMMIT transaction, and previous BEGIN…
§  commit_lsn = WAL position of this commit

static void
decoder_raw_commit_txn(LogicalDecodingContext *ctx,
 ReorderBufferTXN *txn,
 XLogRecPtr commit_lsn)
{
 OutputPluginPrepareWrite(ctx, true);
 appendStringInfoString(ctx->out, "COMMIT;");
 OutputPluginWrite(ctx, true);
}

24 Copyright (c) 2013 VMware, Inc. All Rights Reserved.

Callbacks – DML changes

§  Called each time for each tuple changed
§  Depending on query and REPLICA IDENTITY, old and new tuple

data change
§  For decoder_raw

• WHERE clause of UPDATE and DELETE depends on REPLICA IDENTITY
• Use relation->rd_rel->relreplident and relation->rd_replidindex!

static void
decoder_raw_change(LogicalDecodingContext *ctx, ReorderBufferTXN *txn,
 Relation relation, ReorderBufferChange *change)
{
 old = MemoryContextSwitchTo(data->context);
 switch (change->action)
 {
 case REORDER_BUFFER_CHANGE_INSERT:
 case REORDER_BUFFER_CHANGE_UPDATE:
 case REORDER_BUFFER_CHANGE_DELETE:
 }
}

25 Copyright (c) 2013 VMware, Inc. All Rights Reserved.

So now..

§  Hack your own decoders! Or contribute back.
§  Use test_decoding in contrib/ as a base

• Options present as a model
•  Able to manage field values correctly

• Reuse and abuse of it

§  Demonstration with SQL interface
§  Remember:

•  1 change per tuple

• N tuples changed => more or less N output entries for single record + 2
(BEGIN + COMMIT)

26 Copyright (c) 2013 VMware, Inc. All Rights Reserved.

… And logical receivers

27 Copyright (c) 2013 VMware, Inc. All Rights Reserved.

With SQL interface

§  SQL interface
§  Primitive, maybe fine for simple cases
§  Advantage

•  Light
• Do SQL operations on output, leverage decoder effort to receiver

• Replication slot changes automatically consumed and incremented

§  Disadvantage
•  Lack of flexibility: IDENTIFY_SYSTEM, no flush and written position control

• No replication async or even sync

#!/bin/bash
psql -c “SELECT pg_create_logical_replication_slot(‘slot’, ‘decoder_raw’)”
while :
do
 psql -At –c “SELECT * FROM pg_logical_slot_get_changes(‘slot’, NULL, 1)“
 sleep 1
done

28 Copyright (c) 2013 VMware, Inc. All Rights Reserved.

With replication protocol (1) – Open connection

§ Open replication connection
§  Use PGRES_COPY_BOTH to check result validity
§  Possible to pass options

/* Start logical replication at specified position */
appendPQExpBuffer(query, "START_REPLICATION SLOT \”slot\" LOGICAL 0/0 ”);
res = PQexec(conn, query->data);
if (PQresultStatus(res) != PGRES_COPY_BOTH)
{
 PQclear(res);
 proc_exit(1);
}

PQclear(res);
[…continue…]

29 Copyright (c) 2013 VMware, Inc. All Rights Reserved.

With replication protocol (2) – Fetch changes

§  PQgetCopyData as central piece
•  Status 0 = no data. Wait for more and continue process
•  Status -1 = End of stream. -2 = Failure when reading stream

PQgetCopyData(conn, ©buf, 1);

Keepalive message
-  1 byte for ‘k’
-  8 bytes for WAL end position
-  8 bytes for send timestamp

Record message:
-  1 byte for ‘w’
-  8 bytes for WAL start
-  8 bytes for WAL end
-  8 bytes for send time
-  Rest is data generated

30 Copyright (c) 2013 VMware, Inc. All Rights Reserved.

With replication protocol (3)

§  Look at pg_recvlogical in core!
• Create, drop slots, fetch changes as-is
•  http://www.postgresql.org/docs/devel/static/app-pgrecvlogical.html

•  SendFeedback() is really, really important to avoid WAL file bloat

§  Demonstration with receiver_raw
•  Fetch raw queries from decoder_raw

•  Apply them on local database

• Need some pre-process:
•  Dump of remote schema
•  Correct REPLICA IDENTITY targets depending on application relations

• Code
•  receiver_raw in this repo => https://github.com/michaelpq/pg_plugins
•  PostgreSQL license

31 Copyright (c) 2013 VMware, Inc. All Rights Reserved.

And then…

§  Cool use cases
• Online upgrade (doable with 9.4 but tightly linked with application)
•  Auditing

• Replication solutions: synchronous replication out-of-the-box!

§  Limitations
• Need advanced hacking skills

• Consistent dumps of replication slots by pg_dump

• No DDL yet, but event triggers perhaps showing up
•  In-core online upgrade solution not there yet

•  Drastic reduction of downtime
•  Need some pg_upgrade --online

32 Copyright (c) 2013 VMware, Inc. All Rights Reserved.

Thanks!
Questions?

