

WAL, Standbys and Postgres 9.5

Postgres Open 2015
17th Sept 2015, Dallas

Michael Paquier / VMware

Summary

● About archiving

● … And standbys

● Mixed with magic from Postgres 9.5

Archiving

● Store database crash journal (WAL)
independently

● Used by recovery from backups and by
standbys

● Configuration

wal_level = [archive|hot_standby|logical]
archive_mode = 'on'
archive_command = '...'

Quoting the docs

● Return 0 as exit status if it succeeds
– 0 => Backend assumes archiving is complete

– Not 0 => Backend will retry archiving

● Be careful of existing files.
– Sending output of different clusters at the same place?

– Not overwriting an existing file?

● Reference:
– http://www.postgresql.org/docs/current/static/continuous-

archiving.html

Quoting the docs (2)

● Examples: Any issues here?

Unix
archive_command =
 'test ! -f /mnt/server/archivedir/%f &&
 cp %p /mnt/server/archivedir/%f'

Windows
archive_command =
 'copy "%p" "C:\\server\\archivedir\\%f"'

file://server//archivedir//%25f

Quoting the docs (3)

● No fsync() done.
– host dies before flushing segment to disk

– Maybe game over

● If backend crashes immediately
– Segment not switched from .ready to .done

– May try to archive again same segment

● So…
– Call fsync before leaving archive_command

– Check content of existing segments (checksum, etc.)

– Use a custom script, not only commands

Standbys

● Built from base backup of existing node
– FS-level backup or snapshot

– pg_basebackup

– pg_start_backup() and pg_stop_backup()

● Backup taken from master or other standby

● Can be read-only: hot_standby = on, wal_level
>= hot_standby

● Several types of standbys: warm or hot.

Warm standby
● Consumes WAL from archives via

restore_command of recovery.conf.

● pg_switch_xlog() may be useful.

● Only completed segments are fetched and
replayed.

Master Standby

WAL
Archive

archive_command re
sto

re
_co

mmand

Hot Standby

● Consumes WAL via streaming replication

● Can optionally consume WAL archives

● primary_conninfo in recovery.conf

● Can be synchronous

Master Standby

WAL
Archive

archive_command re
sto

re
_co

mmand

WAL Stream
primary_conninfo

Archive and promotion <= 9.4

● Standby archives last, partial WAL segment of
old timeline at promotion
– Conflicts if archived from standby and master

– Size of 16MB, with garbage after fork point

Master Standby Archive

000000010000000000000022
000000010000000000000023
000000010000000000000024

000000010000000000000025

000000010000000000000022
000000010000000000000023
000000010000000000000024

Promotion
000000010000000000000025
000000020000000000000025
000000020000000000000026

000000010000000000000022
000000010000000000000023
000000010000000000000024

000000010000000000000025
000000020000000000000025
000000020000000000000026

Archive and promotion >= 9.5

● Standby still archives last, partial segment at
promotion of old timeline
– With suffix .partial

– No name conflict

– Format not recognized by backend, should be renamed
manually if used at recovery

Master Standby Archive

000000010000000000000022
000000010000000000000023
000000010000000000000024
000000010000000000000025

000000010000000000000022
000000010000000000000023
000000010000000000000024

Promotion
000000010000000000000025
000000020000000000000025
000000020000000000000026

000000010000000000000022
000000010000000000000023
000000010000000000000024
000000010000000000000025
000000010000000000000025.

partial
000000020000000000000025
000000020000000000000026

Lost WAL segments

● Master crashed before archiving all segments
– Game over to recover from older backups on new

timeline

– Series of backups now useless

Master Standby Archive

000000010000000000000022
000000010000000000000023
000000010000000000000024
000000010000000000000025

000000010000000000000022
000000010000000000000023
000000010000000000000024

Promotion
000000010000000000000025
000000020000000000000025
000000020000000000000026

000000010000000000000022
000000010000000000000023

000000010000000000000025.
partial

000000020000000000000025
000000020000000000000026

Master Standby Archive

000000010000000000000022
000000010000000000000023
000000010000000000000024
000000010000000000000025

000000010000000000000022
000000010000000000000023
000000010000000000000024

Promotion
000000010000000000000025
000000020000000000000025
000000020000000000000026

000000010000000000000022
000000010000000000000023

000000010000000000000025.
partial

000000020000000000000025
000000020000000000000026

archive_mode = 'always'

● No changes on master node compared to 'on'

● In recovery mode
– standby will archive segments whose reception is finished

– For <= 9.4, forcibly switched to .done

– May want to use same archive_command. Or not.

Master Standby Archive

000000010000000000000022
000000010000000000000023
000000010000000000000024
000000010000000000000025

000000010000000000000022
000000010000000000000023
000000010000000000000024

Promotion
000000010000000000000025
000000020000000000000025
000000020000000000000026

000000010000000000000022
000000010000000000000023
000000010000000000000024

000000010000000000000025.
partial

000000020000000000000025
000000020000000000000026

archive_mode = 'always' (2)

● Be aware of name
conflicts

● Be careful with
restore_command

Master Standby

WAL
Archive

Master Standby

WAL
Archive

WAL
Archive

pg_receivexlog

● Useful to leverage archiving
● Segments marked as .partial if not completed
● Should be used on archive host
● New features

– Support for timeline switches in 9.3

– Replication slots in 9.4

– Synchronous mode in 9.5

● Take advantage with cascading replication and standbys
(works <= 9.2)

pg_rewind (1)

● Resync an existing data directory without new
base backup
– Replug old master to existing cluster => “rewind it”

Timeline 1

Timeline 2

WAL history

Old master

Promoted slave

pg_rewind (2)
Timeline 1

Timeline 2

WAL history

Old master

Promoted slave

Reconnect NO!

Timeline 1

Timeline 2

Old master

Promoted slave

1) Rewind YES!
2) Replay

pg_rewind (3)

● Scan old master data folder
– Start from WAL fork point

– Record data blocks touched

● Copy all changed blocks from promoted slave to old
master

● Copy clog, conf files...
● Replay WAL from master, starting from last checkpoint

before WA forked
● WAL format refactored for block tracking

pg_rewind (4)

● Largely faster than a new base backup
● Limitations

– Need wal_log_hints = on or data checksum

– Might not have all WAL for replay, can copy them
though

– No handling of timeline switches (WIP for 9.6)

WAL reader facility (1)

● Series of routines to decode WAL records in
xlogreader.c

● Used by pg_xlogdump, WAL decoding,
pg_rewind.

● Available since Postgres 9.3

● 9.5 facilitates block tracking: no need to know
record type

WAL reader facility (2)

● Example of code: pg_wal_blocks

● https://github.com/michaelpq/pg_plugins/

$ pg_wal_blocks $PGDATA/pg_xlog/000000010000000000000001 2>&1
Block touched: dboid = 16384, relid = 16385, block = 0
[...]
Block touched: dboid = 16384, relid = 16385, block = 2
[...]

min_wal_size and max_wal_size

● checkpoint_segments removed

● max_wal_size
– Maximum WAL size between checkpoints

– Soft limit

● min_wal_size
– Control of WAL segment recycling

– Useful to handle spikes in WAL usage

wal_compression?

● Not really WAL compression...

● Compression of full-page writes in WAL records
– Image of block saved in WAL during modification

after checkpoint.

● Compression with pglz
– CPU consumer (may want to switch to lz4 in future)

– Pushed in src/common, available for extensions

● Reduction of sequential I/O induced by WAL at
the cost of some CPU.

wal_compression - performance

● Reduction of WAL size, for example:
– 15% for FPW with UUID datatype

– 27% for FPW with integers

● Reduction of recovery time, less segments to fetch.
– Local machine, 500MB of FPWs.

– UUID: 14.7s/15.3s

– Integers: 18.5s/21.8s

● Synchronous replication
– Bottleneck may be WAL record length when master and standby

hosts are close

– Contention with SyncRepLock

– Can increase overall output

wal_compression - security

● Compression rate of a page gives hints on
content

● Now only PGC_SUSET

● Hide WAL position to lambda users
– pg_current_xlog_position()

– pg_current_xlog_insert_location()

– pg_last_xlog_receive_location()

– pg_last_xlog_replay_location()

REVOKE ALL ON FUNCTION pg_current_xlog_location() FROM PUBLIC;
-- etc.

wal_retrieve_retry_interval

● In 9.5, to control interval of time to fetch WAL
from source after failure, either WAL archive or
WAL receiver.

● Useful for warm standbys
– Limit requests to archive server

– Accelerate detection of archived segment

Thanks!
Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

