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Summary

● About archiving

● … And standbys

● Mixed with magic from Postgres 9.5



  

Archiving

● Store database crash journal (WAL) 
independently

● Used by recovery from backups and by 
standbys

● Configuration

wal_level = [archive|hot_standby|logical]
archive_mode = 'on'
archive_command = '...'



  

Quoting the docs

● Return 0 as exit status if it succeeds
– 0 => Backend assumes archiving is complete

– Not 0 => Backend will retry archiving

● Be careful of existing files.
– Sending output of different clusters at the same place?

– Not overwriting an existing file?

● Reference:
– http://www.postgresql.org/docs/current/static/continuous-

archiving.html



  

Quoting the docs (2)

● Examples: Any issues here?

# Unix
archive_command =
     'test ! -f /mnt/server/archivedir/%f &&
      cp %p /mnt/server/archivedir/%f'

# Windows
archive_command =
    'copy "%p" "C:\\server\\archivedir\\%f"'

file://server//archivedir//%25f


  

Quoting the docs (3)

● No fsync() done.
– host dies before flushing segment to disk

– Maybe game over

● If backend crashes immediately
– Segment not switched from .ready to .done

– May try to archive again same segment

● So…
– Call fsync before leaving archive_command

– Check content of existing segments (checksum, etc.)

– Use a custom script, not only commands



  

Standbys

● Built from base backup of existing node
– FS-level backup or snapshot

– pg_basebackup

– pg_start_backup() and pg_stop_backup()

● Backup taken from master or other standby 

● Can be read-only: hot_standby = on, wal_level 
>= hot_standby

● Several types of standbys: warm or hot.



  

Warm standby
● Consumes WAL from archives via 

restore_command of recovery.conf.

● pg_switch_xlog() may be useful.

● Only completed segments are fetched and 
replayed.
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Hot Standby

● Consumes WAL via streaming replication

● Can optionally consume WAL archives

● primary_conninfo in recovery.conf

● Can be synchronous
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Archive and promotion <= 9.4

● Standby archives last, partial WAL segment of 
old timeline at promotion
– Conflicts if archived from standby and master

– Size of 16MB, with garbage after fork point
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Archive and promotion >= 9.5

● Standby still archives last, partial segment at 
promotion of old timeline
– With suffix .partial

– No name conflict

– Format not recognized by backend, should be renamed 
manually if used at recovery
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Lost WAL segments

● Master crashed before archiving all segments
– Game over to recover from older backups on new 

timeline

– Series of backups now useless
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archive_mode = 'always'

● No changes on master node compared to 'on'

● In recovery mode
– standby will archive segments whose reception is finished 

– For <= 9.4, forcibly switched to .done

– May want to use same archive_command. Or not.
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archive_mode = 'always' (2)

● Be aware of name 
conflicts

● Be careful with 
restore_command
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pg_receivexlog

● Useful to leverage archiving
● Segments marked as .partial if not completed
● Should be used on archive host
● New features

– Support for timeline switches in 9.3

– Replication slots in 9.4

– Synchronous mode in 9.5

● Take advantage with cascading replication and standbys 
(works <= 9.2)



  

pg_rewind (1)

● Resync an existing data directory without new 
base backup
– Replug old master to existing cluster => “rewind it”

Timeline 1

Timeline 2

WAL history

Old master

Promoted slave



  

pg_rewind (2)
Timeline 1

Timeline 2

WAL history

Old master

Promoted slave

Reconnect NO!

Timeline 1

Timeline 2

Old master

Promoted slave

1) Rewind YES!
2) Replay



  

pg_rewind (3)

● Scan old master data folder
– Start from WAL fork point

– Record data blocks touched

● Copy all changed blocks from promoted slave to old 
master

● Copy clog, conf files...
● Replay WAL from master, starting from last checkpoint 

before WA forked
● WAL format refactored for block tracking



  

pg_rewind (4)

● Largely faster than a new base backup
● Limitations

– Need wal_log_hints = on or data checksum

– Might not have all WAL for replay, can copy them 
though

– No handling of timeline switches (WIP for 9.6)



  

WAL reader facility (1)

● Series of routines to decode WAL records in 
xlogreader.c

● Used by pg_xlogdump, WAL decoding, 
pg_rewind.

● Available since Postgres 9.3

● 9.5 facilitates block tracking: no need to know 
record type 



  

WAL reader facility (2)

● Example of code: pg_wal_blocks

● https://github.com/michaelpq/pg_plugins/

$ pg_wal_blocks $PGDATA/pg_xlog/000000010000000000000001 2>&1
Block touched: dboid = 16384, relid = 16385, block = 0
[...]
Block touched: dboid = 16384, relid = 16385, block = 2
[...]



  

min_wal_size and max_wal_size

● checkpoint_segments removed

● max_wal_size
– Maximum WAL size between checkpoints

– Soft limit

● min_wal_size
– Control of WAL segment recycling

– Useful to handle spikes in WAL usage



  

wal_compression?

● Not really WAL compression...

● Compression of full-page writes in WAL records
– Image of block saved in WAL during modification 

after checkpoint.

● Compression with pglz
– CPU consumer (may want to switch to lz4 in future)

– Pushed in src/common, available for extensions

● Reduction of sequential I/O induced by WAL at 
the cost of some CPU.



  

wal_compression - performance

● Reduction of WAL size, for example:
– 15% for FPW with UUID datatype

– 27% for FPW with integers

● Reduction of recovery time, less segments to fetch.
– Local machine, 500MB of FPWs.

– UUID: 14.7s/15.3s

– Integers: 18.5s/21.8s

● Synchronous replication
– Bottleneck may be WAL record length when master and standby 

hosts are close

– Contention with SyncRepLock

– Can increase overall output



  

wal_compression - security

● Compression rate of a page gives hints on 
content

● Now only PGC_SUSET 

● Hide WAL position to lambda users
– pg_current_xlog_position()

– pg_current_xlog_insert_location()

– pg_last_xlog_receive_location()

– pg_last_xlog_replay_location()

REVOKE ALL ON FUNCTION pg_current_xlog_location() FROM PUBLIC;
-- etc.



  

wal_retrieve_retry_interval

● In 9.5,  to control interval of time to fetch WAL 
from source after failure, either WAL archive or 
WAL receiver.

● Useful for warm standbys
– Limit requests to archive server

– Accelerate detection of archived segment



  

Thanks!
Questions?
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