

SCRAM authentication
Michael Paquier – VMware

2017/12/06, PGConf Asia 2017

Authentication methods

● Password
– Plain text
– MD5
– SCRAM-SHA-256
– RADIUS, ldap, pam, BSD...

● SSL certificates
● Kerberos, SSPI (Windows)
● peer
● https://www.postgresql.org/docs/current/static/auth-

methods.html#AUTH-BSD

Plain text

● Password sent in clear text

● Can be used with SSL!
– sslmode = verify-full
– sslmode = prefer, the default, is an abomination

● Weak to password sniffing, across network.

Server: Please send your password
Client: “hoge”
Server: OK, good to go

MD5

● Password hash sent:

● Can still be used with SSL!
● Issues

– User rename
– MD5 is said to be *bad* (see community lists).

Server: Here is a salt (4 random bytes), please compute
 md5(md5(password || username), salt)
Client: “ad22f1df5331cfa7603c67a2092c6159”
Server: OK, good to go

Attacking MD5 hash

● Guess attack
– Hash calculation is fast (Millions per second)

● Replay attack
– Salt is 4 bytes
– 4-billion possibilities

● Pass-the-hash
– Connection possible just by knowing the stored

hash.
– Old backups lying around?

Deprecated features in v10

● Removal
– password_encryption = off/plain is removed
– Plain text entries in pg_authid
– createuser --unencrypted

● libpq
– PQencryptPassword() is deprecated.
– Use PQencryptPasswordConn().
– psql’s \password uses it and sets password hash to

password_encryption.

About SCRAM

● Salted Challenge Response Authentication
Mechanism

● Implementation of SCRAM-SHA-256
● RFCs

– 5802: https://tools.ietf.org/html/rfc5802
– 7677: https://tools.ietf.org/html/rfc7677

● New in PostgreSQL 10
● RFC compliant

– Note that username is sent empty

https://tools.ietf.org/html/rfc5802
https://tools.ietf.org/html/rfc7677

SCRAM protocol

● Challenge-based exchange
Client: Here is a random nonce (18 bytes)
 r=ReZeIvordKIQsS5/uybHrLKa

Server: Here is my random nonce, salt and iteration count
 r=ReZeIvordKIQsS5/uybHrLKaJ4YZ83N/PitA0fx0eEmj1Gro,
 s=aqgRYGF+L5LUrYpej98rgA==,
 i=4096

Client: Proof that I know the password.
 p=O/BAMj7s/fbE5UvMKfhXRmObj/s2hlD23sMqUIlIsxk=

Server: Proof that I also know the password.
 v=JyGOhjHVCnLjCbJuC/XTICPPQFQ2fGk8+sCbSq2g+5I=

SCRAM security

● Replay attacks => longer nonces
● Hashed stored in pg_authid cannot be used

directly.
● Dictionary attacks

– Iteration count can be used as parameter
– Computation of connection proof is costly (cost in

connection startup)

SCRAM-SHA-256

● SCRAM originally uses SHA-1.
● SHA-256,384 and 512 functions available in

src/common/sha2*.c.
● Only uses SHA-256 as hash function.

Verifiers
● Still one verifier per role.
● No dependency on role name (no removal on rename).
● Complicates upgrade scenarios.
● Controlled by password_encryption

– Default to ‘md5’

=# SET password_encryption TO 'md5';
SET
=# CREATE ROLE role_md5 PASSWORD 'hoge';
CREATE ROLE
=# SET password_encryption TO 'scram-sha-256';
SET
=# CREATE ROLE role_scram PASSWORD 'hoge';
CREATE ROLE

Format

● Usable with LDAP
● SCRAM-SHA-256$<iteration count>:

<salt>$<StoredKey>:<ServerKey>

=# SELECT rolname, rolpassword FROM pg_authid
 WHERE rolname ~ 'role';
 rolname | rolpassword
------------+--
 role_md5 | md5927f6dffb8b758965daa42fb9a868958
 role_scram | SCRAM-SHA-256$4096:nEYxO97qeT9i89Zrkegox
w==$aSEM7ph+TydluWFRXFLSJ9Aqen2qtGw/lkH1rePRYBk=:w2pW4
8qqsaMvPfzWZmUAbeNoOctBnK2myx35XM7XJLo=
(2 rows)

pg_hba.conf

Local connections for Unix domain sockets
TYPE DATABASE USER ADDRESS METHOD
local all all trust

md5 authentication with SSL from dev machines
hostssl all all dev.example.com md5

SCRAM for the rest, still with SSL
hostssl all all all scram-sha-256

● https://www.postgresql.org/docs/current/static/auth-pg-hba-conf.html

Support server-client

● With password, md5 and scram-sha-256...

hba configuration

Verifier type password md5 scram-sha-256

MD5 O [1] O X

SCRAM-SHA-256 O [1] O [2] O

[1]: Plain text is used, hash generated server-side.

[2]: SCRAM is used.

Extra work with v10

● Middleware support
– pgbouncer (patch available on github)
– pgpool

● Drivers:
https://wiki.postgresql.org/wiki/List_of_drivers
– ODBC, stuff using libpq => OK
– JDBC supports protocol

https://wiki.postgresql.org/wiki/List_of_drivers

Future improvements

● LDAP extension, storage of SCRAM verifier
● Channel binding
● Iteration count configurable
● Not possible to enforce scram in libpq, rogue

servers can force downgrades :(

Upgrade to SCRAM

● Update pg_hba.conf (not mandatory)
– Password, md5 to scram-sha-256

● Client updates, only libpq >= v10 supports
SCRAM

● password_encryption = ‘scram-sha-256’ in
postgresql.conf.

● Change user passwords.
● Note: still only one password per role :(

SCRAM and encryption

● SCRAM = authentication, not encryption.
● Please still use with sslmode=verify-full in v10.
● With channel binding, setup gets easier.

About SASL

● Simple Authentication and Security Layer
● RFC 4422: https://tools.ietf.org/html/rfc4422
● “Framework for authentication and data security in

Internet protocols. It decouples authentication
mechanisms from application protocols, in theory allowing
any authentication mechanism supported by SASL to be
used in any application protocol that uses SASL.”

● SCRAM is a SASL mechanism.
● Client drivers could use generic SASL and SCRAM

implementation as Postgres is RFC-compliant.
● DIGEST-MD5 or others could be added.

https://tools.ietf.org/html/rfc4422

Channel binding

● MITM prevention, by “binding” FE/BE
● RFC 5929: https://tools.ietf.org/html/rfc5929
● Ensure that the point where a connection is

done is still the same.
● Channel types:

– unique: a specific connection is sure to be used.
– endpoint: the endpoints are the same.

https://tools.ietf.org/html/rfc5929

Channel binding for Postgres

● Two channel types
– tls-unique, ensure that using a hash of the TLS end message.
– tls-server-end-point, using a hash of server certificate (useful

for JDBC).

● OpenSSL has support (fancy research).
● Macos, gnuTLS (?) and Windows not directly.
● Connection parameters

– Channel binding name.
– Allow client to choose with or without.

● Patch for v11 in review.

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

