

Authentication in PostgreSQL
Michael Paquier – VMware
2018/05/31, PGCon 2018

The man
● Michael Paquier.
● French, based in Tokyo.
● PostgreSQL contributor since 2009

– Some patches, some reviews and some bug fixes.
– Blogging.

● Working at VMware on PostgreSQL
– Packaging.
– Integration.
– Support.

Authentication methods
● Password

– Plain text
– MD5
– SCRAM-SHA-256
– RADIUS, ldap, pam, BSD…

● Certificates
● Kerberos, SSPI (Windows)
● peer
● https://www.postgresql.org/docs/current/static/auth-methods.html

Code location
● Backend, src/backend/libpq

– auth.c, auth-scram.c for authentication.
– be-secure*.c for SSL.
– hba.c for administration.

● Frontend (libpq), src/interfaces/libpq:
– fe-auth.c, fe-auth-scram.c for authentication.
– fe-secure*.c for SSL.

pg_hba.conf
● Administration policy with filter sets

– User
– Database
– Host
– Type

● Controls authentication and connection policies.
● Order-dependent:

– First match wins.
– Place the most specific first.

● Also listen_addresses!

pg_ident.conf
● User name mapping

– Map name
– OS user
– Database user

● Useful for GSSAPI, peer.
● regex support
● Additional field map=hoge in pg_hba.conf

pg_service.conf
● Centralize connection parameters for clients.
● PGSERVICEFILE, and *no* connection parameters
● Say a local service connecting to Postgres
● Connection parameter “service=archiver” or PGSERVICE

● Use with pg_ident.conf!

[archiver]
host=$DB_HOST_OR_SOCKET_DIR
port=$DB_PORT
user=$DB_USER

Trust method
● No security at all.
● Simply allow connections to come any

– Anybody
– Anywhere (can filter by IP)

● Use cases
– Unix domain sockets (local) for debugging.
– Personal laptop and development.

Plain text
● Password sent in clear text

● Use SSL!
● Weak to password sniffing, across network.

Server: Please send your password
Client: “hoge”
Server: OK, good to go

MD5
● Password hash sent:

● Again use SSL!
● Issues

– User rename
– Bad and weak reputation (see community lists).
– Contents of pg_authid

Server: Here is a salt (4 random bytes),
 please compute md5(md5(password || username), salt)
Client: “ad22f1df5331cfa7603c67a2092c6159”
Server: OK, good to go

Attacking MD5 hash
● Guess attack

– Hash calculation is fast (Millions per second)

● Replay attack
– Salt is 4 bytes
– 4-billion possibilities

● Pass-the-hash
– Connection possible just by knowing the stored hash.
– Old backups lying around?

SCRAM-SHA-256
● Challenge-based exchange, added in v10.

Client: Here is a random nonce (18 bytes)
 r=ReZeIvordKIQsS5/uybHrLKa

Server: Here is my random nonce, salt and iteration count
 r=ReZeIvordKIQsS5/uybHrLKaJ4YZ83N/PitA0fx0eEmj1Gro,
 s=aqgRYGF+L5LUrYpej98rgA==,
 i=4096

Client: Proof that I know the password.
 p=O/BAMj7s/fbE5UvMKfhXRmObj/s2hlD23sMqUIlIsxk=

Server: Proof that I also know the password.
 v=JyGOhjHVCnLjCbJuC/XTICPPQFQ2fGk8+sCbSq2g+5I=

SCRAM security
● Replay attacks => longer nonces
● Hash stored in pg_authid cannot be used directly.
● Dictionary attacks

– Iteration count can be used as parameter
– Computation of connection proof is costly (cost at

connection startup)

● Still use SSL.

Client/server and HBA entries
● With password, md5 and scram-sha-256…

● [1]: Plain text is used, hash generated server-side.
● [2]: SCRAM is used.

hba configuration

Verifier type password md5 scram-sha-256

MD5 O [1] O X

SCRAM O [1] O [2] O

SCRAM Channel binding
● MITM prevention, by “binding” FE/BE
● RFC 5929: https://tools.ietf.org/html/rfc5929
● Ensure that the point where a connection is done is still

the same.
● Channel types:

– unique: a specific connection is sure to be used.
– endpoint: the endpoints are the same.

Channel binding for Postgres
● Added in Postgres 11.
● Two channel types

– tls-unique, ensure that using a hash of the TLS end message.
– tls-server-end-point, using a hash of server certificate (useful for JDBC).

● OpenSSL, gnuTLS have support.
● Macos and Windows not directly.
● Connection parameter scram_channel_binding

– Default is “tls-unique”
– Empty value disables channel binding.
– Choice left to the client, server advertises it.

● Protocol changes needed again in drivers!

Driver support
● Be careful with authentication choice and the client interface

used!
● JDBC, npgsql with SCRAM (+ channel binding!)
● Things linking with libpq:

– ODBC
– psycopg2, etc.

● Gets complicated with large product integration.
● https://wiki.postgresql.org/wiki/List_of_drivers

Peer
● Unix socket connections (local)

– No Windows here.

● Relies on kernel call getpeereid()
● Use with pg_ident.conf and static service files.

– Local WAL archiver.
– Cron diagnostic tool (or background worker).
– No need for superuser!

LDAP
● Server-side implementation
● Useful for large organizations
● Cleartext password seen from client
● Format supported

– prefix+suffix, or simple bind
– search+bind

● Use SSL: ldaptls=1 and hostssl
● Password policies with ppolicy

LDAP, new as of v11
● Addition of LDAPS

– LDAP + StartTLS is standard
– New parameter ldapscheme

● ldapsearchfilter
– More flexible than ldapsearchattribute
– ldapsearchfilter="(|(uid=$username)(mail=$username))"
– $username as magic value

GSS/SSPI
● Uses Kerberos.

– Active directory available
– No password prompt.

● User mapping with pg_ident.conf.
● Again use SSL!
● No support for GSSAPI encryption

– Patch submitted for v10, not merged.
– Requires low-level surgery for message exchange.
– Requires equivalent of sslmode.

Certificates
● No password prompt.
● CN field checked for match with database user.
● User mapping in pg_ident.conf.
● Only over SSL.
● Client needs to use trusted certificate.
● Documentation improvements in v11 (see 815f84aa)
● Use v3_ca for intermediate certificates

Superusers
● Never use them, except if you really can’t.
● System function ACLs!

– Grant execution and access to specific users
– pg_rewind not requiring superuser
– System roles at the rescue

Some extras
● PAM

– password for the client.
– SSL, again!
– PAM through LDAP with pam_ldap.

● BSD
– password for the client.
– Added in 9.6.
– OpenBSD only.

SSL negotiation
● Server sends options.
● Client decides.
● Controlled by:

– sslmode, connection parameter
– PGSSLMODE, environment variable

Security with sslmode
Modes Protection Server-side SSL

Verifier type Eavesdropping MITM Disabled Required

disable X X O X

allow X X O O

prefer (default!) X X O O

require O X X O

verify-ca O O X O

verify-full O O X O

Authentication tests
● src/test/

– authentication/, hba and SCRAM (SASLprep)
– kerberos/
– ldap/
– ssl/, certificates and channel binding

● PG_TEST_EXTRA
● PROVE_TESTS

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

