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The man
● Michael Paquier.
● French, based in Tokyo.
● PostgreSQL contributor since 2009

– Some patches, some reviews and some bug fixes.
– Blogging.

● Working at VMware on PostgreSQL
– Packaging.
– Integration.
– Support.



  

Authentication methods
● Password

– Plain text
– MD5
– SCRAM-SHA-256
– RADIUS, ldap, pam, BSD…

● Certificates
● Kerberos, SSPI (Windows)
● peer
● https://www.postgresql.org/docs/current/static/auth-methods.html



  

Code location
● Backend, src/backend/libpq

– auth.c, auth-scram.c for authentication.
– be-secure*.c for SSL.
– hba.c for administration.

● Frontend (libpq), src/interfaces/libpq:
– fe-auth.c, fe-auth-scram.c for authentication.
– fe-secure*.c for SSL.



  

pg_hba.conf
● Administration policy with filter sets

– User
– Database
– Host
– Type

● Controls authentication and connection policies.
● Order-dependent:

– First match wins.
– Place the most specific first.

● Also listen_addresses!



  

pg_ident.conf
● User name mapping

– Map name
– OS user
– Database user

● Useful for GSSAPI, peer.
● regex support
● Additional field map=hoge in pg_hba.conf



  

pg_service.conf
● Centralize connection parameters for clients.
● PGSERVICEFILE, and *no* connection parameters
● Say a local service connecting to Postgres
● Connection parameter “service=archiver” or PGSERVICE

● Use with pg_ident.conf!

[archiver]
host=$DB_HOST_OR_SOCKET_DIR
port=$DB_PORT
user=$DB_USER



  

Trust method
● No security at all.
● Simply allow connections to come any

– Anybody
– Anywhere (can filter by IP)

● Use cases
– Unix domain sockets (local) for debugging.
– Personal laptop and development.



  

Plain text
● Password sent in clear text

● Use SSL!
● Weak to password sniffing, across network.

Server: Please send your password
Client: “hoge”
Server: OK, good to go



  

MD5
● Password hash sent:

● Again use SSL!
● Issues

– User rename
– Bad and weak reputation (see community lists).
– Contents of pg_authid

Server: Here is a salt (4 random bytes),
             please compute md5(md5(password || username), salt)
Client: “ad22f1df5331cfa7603c67a2092c6159”
Server: OK, good to go



  

Attacking MD5 hash
● Guess attack

– Hash calculation is fast (Millions per second)

● Replay attack
– Salt is 4 bytes
– 4-billion possibilities

● Pass-the-hash
– Connection possible just by knowing the stored hash.
– Old backups lying around?



  

SCRAM-SHA-256
● Challenge-based exchange, added in v10.

Client: Here is a random nonce (18 bytes)
  r=ReZeIvordKIQsS5/uybHrLKa

Server: Here is my random nonce, salt and iteration count
  r=ReZeIvordKIQsS5/uybHrLKaJ4YZ83N/PitA0fx0eEmj1Gro,
  s=aqgRYGF+L5LUrYpej98rgA==,
  i=4096

Client: Proof that I know the password.
  p=O/BAMj7s/fbE5UvMKfhXRmObj/s2hlD23sMqUIlIsxk=

Server: Proof that I also know the password.
  v=JyGOhjHVCnLjCbJuC/XTICPPQFQ2fGk8+sCbSq2g+5I=



  

SCRAM security
● Replay attacks => longer nonces
● Hash stored in pg_authid cannot be used directly.
● Dictionary attacks

– Iteration count can be used as parameter
– Computation of connection proof is costly (cost at 

connection startup)

● Still use SSL.



  

Client/server and HBA entries
● With password, md5 and scram-sha-256…

● [1]: Plain text is used, hash generated server-side.
● [2]: SCRAM is used.

hba configuration

Verifier type password md5 scram-sha-256

MD5 O [1] O X

SCRAM O [1] O [2] O



  

SCRAM Channel binding
● MITM prevention, by “binding” FE/BE
● RFC 5929: https://tools.ietf.org/html/rfc5929
● Ensure that the point where a connection is done is still 

the same.
● Channel types:

– unique: a specific connection is sure to be used.
– endpoint: the endpoints are the same.



  

Channel binding for Postgres
● Added in Postgres 11.
● Two channel types

– tls-unique, ensure that using a hash of the TLS end message.
– tls-server-end-point, using a hash of server certificate (useful for JDBC).

● OpenSSL, gnuTLS have support.
● Macos and Windows not directly.
● Connection parameter scram_channel_binding

– Default is “tls-unique”
– Empty value disables channel binding.
– Choice left to the client, server advertises it.

● Protocol changes needed again in drivers!



  

Driver support
● Be careful with authentication choice and the client interface 

used!
● JDBC, npgsql with SCRAM (+ channel binding!)
● Things linking with libpq:

– ODBC
– psycopg2, etc.

● Gets complicated with large product integration.
● https://wiki.postgresql.org/wiki/List_of_drivers



  

Peer
● Unix socket connections (local)

– No Windows here.

● Relies on kernel call getpeereid()
● Use with pg_ident.conf and static service files.

– Local WAL archiver.
– Cron diagnostic tool (or background worker).
– No need for superuser!



  

LDAP
● Server-side implementation
● Useful for large organizations
● Cleartext password seen from client
● Format supported

– prefix+suffix, or simple bind
– search+bind

● Use SSL: ldaptls=1 and hostssl
● Password policies with ppolicy



  

LDAP, new as of v11
● Addition of LDAPS

– LDAP + StartTLS is standard
– New parameter ldapscheme

● ldapsearchfilter
– More flexible than ldapsearchattribute
– ldapsearchfilter="(|(uid=$username)(mail=$username))"
– $username as magic value



  

GSS/SSPI
● Uses Kerberos.

– Active directory available
– No password prompt.

● User mapping with pg_ident.conf.
● Again use SSL!
● No support for GSSAPI encryption

– Patch submitted for v10, not merged.
– Requires low-level surgery for message exchange.
– Requires equivalent of sslmode.



  

Certificates
● No password prompt.
● CN field checked for match with database user.
● User mapping in pg_ident.conf.
● Only over SSL.
● Client needs to use trusted certificate.
● Documentation improvements in v11 (see 815f84aa)
● Use v3_ca for intermediate certificates 



  

Superusers
● Never use them, except if you really can’t.
● System function ACLs!

– Grant execution and access to specific users
– pg_rewind not requiring superuser
– System roles at the rescue



  

Some extras
● PAM

– password for the client.
– SSL, again!
– PAM through LDAP with pam_ldap.

● BSD
– password for the client.
– Added in 9.6.
– OpenBSD only.



  

SSL negotiation
● Server sends options.
● Client decides.
● Controlled by:

– sslmode, connection parameter
– PGSSLMODE, environment variable



  

Security with sslmode
Modes Protection Server-side SSL

Verifier type Eavesdropping MITM Disabled Required

disable X X O X

allow X X O O

prefer (default!) X X O O

require O X X O

verify-ca O O X O

verify-full O O X O



  

Authentication tests
● src/test/

– authentication/, hba and SCRAM (SASLprep)
– kerberos/
– ldap/
– ssl/, certificates and channel binding

● PG_TEST_EXTRA
● PROVE_TESTS



  

Questions?
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