

PostgreSQL 12 and beyond

PostgreSQL Conference Japan 2019
November 15th, Tokyo

Michael Paquier

The man
● Michael Paquier.
● French, based in Tokyo.
● PostgreSQL contributor since 2009

– Committer
– Hacker, Blogger

● Twitter: @michaelpq
● Website: https://paquier.xyz
● Working at VMware: Packaging, Integration, Support.

Partitioning - 1
● Performance improvements with many

partitions
– COPY, switch to bulk-inserts
– INSERT, lock partition before insertion of single row
– SELECT, partition pruning and meta-data handling

● About performance, David Rowley, 2ndQ:
https://www.2ndquadrant.com/en/blog/postgresql-12-partitioning/

Partitioning - 2
● Tablespace inheritance.
● Foreign keys to reference partitioned tables.
● Expressions for partition bounds.
● ATTACH PARTITION <=> Lock level lower.

Partitioning - 3
● Partition functions

pg_partition_root()
pg_partition_ancestors()
pg_partition_tree()

=# SELECT * FROM pg_partition_tree('parent_tab');
 relid | parentrelid | isleaf | level
-------------+-------------+--------+-------
 parent_tab | null | f | 0
 child_0_10 | parent_tab | t | 1
 child_10_20 | parent_tab | t | 1
 child_20_30 | parent_tab | t | 1
 child_30_40 | parent_tab | f | 1
 child_30_35 | child_30_40 | t | 2
 child_35_40 | child_30_40 | t | 2
(7 rows)

Partitioning - next?
● Planner still slow with many partitions.
● More partition-wise joins?
● Logical replication and partitioned tables.
● Think carefully about partitioning strategy.

– Redistribution.
– OLTP and/or analytics.

Btree indexes
● Many duplicates

– Sort in heap-storage order
– Storage lower
– Performance with VACUUM and INSERT

● Multi-column storage smaller.
● Pre-11 indexes compatible after pg_upgrade but require

REINDEX to get benefits.

REINDEX
● REINDEX => access exclusive lock.

– No writes and no reads.
– Blocks production and takes time.
– Can be monitored in v12~.

● CONCURRENTLY
– Allows read and writes.
– Takes longer, handles dependencies automatically.
– pg_reorg/pg_repack.

REINDEX - next?
● Parallel job support in reindexdb --jobs (done!)
● Collation version storing
● Filtering of collation-sensitive indexes
● glibc breaking indexes randomly with its

upgrades!

Generated columns
● Two kinds: stored and virtual.
● Postgres supports only stored.
● Less triggers, some restrictions on expressions.

=# CREATE TABLE person_data (
 person_id int,
 weight_grams numeric,
 weight_kilos numeric GENERATED ALWAYS AS
 (weight_grams / 1000) STORED);
CREATE TABLE
=# INSERT INTO person_data VALUES (1, 55000);
INSERT 0 1
=# SELECT * FROM person_data;
 person_id | weight_grams | weight_kilos
-----------+--------------+---------------------
 1 | 55000 | 55.0000000000000000
(1 row)

WITH and MATERIALIZE
● Before 11: Always materialize (temporary copy)

– Advantage: DML + RETURNING.
– Not much: CTE with large scan.

=# EXPLAIN (COSTS OFF)
 WITH large_scan AS MATERIALIZED
 (SELECT * FROM very_large_tab)
 SELECT * FROM large_scan WHERE id = 1;
 QUERY PLAN

 CTE Scan on large_scan
 Filter: (id = 1)
 CTE large_scan
 -> Seq Scan on very_large_tab
(4 rows)

=# EXPLAIN (COSTS OFF)
 WITH large_scan AS NOT MATERIALIZED
 (SELECT * FROM very_large_tab)
 SELECT * FROM large_scan WHERE id = 1;
 QUERY PLAN

 Gather
 Workers Planned: 2
 -> Parallel Seq Scan on very_large_tab
 Filter: (id = 1)
(4 rows)

Table Access Methods - 1
● Plugin facility to control table engine, not indexes!
● API not to be considered stable, designed to evolve and break.
● Heap is the default.
● Zedstore (columnar), zheap (UNDO-based).
● Limitation with WAL, reloptions (locks fixed in 13~).
● Two categories

– Uses Postgres shared buffers, page format, storage..
– The rest, can do a lot.

Table Access Methods - 2

Andres Freund (slide 5)

● https://anarazel.de/talks/2018-10-25-pgconfeu-pluggable-storage/pluggable.pdf

Table Access Methods - 3
● Columnar, compression storage, etc.
● Example: blackhole_am

https://github.com/michaelpq/pg_plugins/tree/master/blackhole_am

=# CREATE EXTENSION blackhole_am;
CREATE EXTENSION
=# CREATE TABLE blackhole_tab (a int) USING blackhole_am;
CREATE TABLE
=# INSERT INTO blackhole_tab VALUES (1);
INSERT 0 1
=# SELECT * FROM blackhole_tab;
 a

(0 rows)

Recovery
● All recovery parameters become GUCs:

– SHOW and ALTER SYSTEM
– trigger_file => promote_trigger_file
– standby_mode gone
– No multiple recovery targets
– recovery_target_timeline ~> default to ‘latest’

● recovery.conf gone => standby.signal & recovery.signal
● pg_promote() as SQL function.

Data checksums
● pg_checksums

– Enable and disable, no parallel support
– Progress reporting
– Only for offline cluster
– Renamed from pg_verify_checksums in 12~

● Checksum failures in pg_stat_database
● Next: Online mode?

Transaction chains
● COMMIT AND CHAIN
● ROLLBACK AND CHAIN
● Error outside transaction block.

=# COMMIT AND CHAIN;
ERROR: 25P01: COMMIT AND CHAIN can only be used in transaction blocks
=# BEGIN;
BEGIN
=# COMMIT AND CHAIN;
COMMIT
=# BEGIN;
WARNING: 25001: there is already a transaction in progress
BEGIN
=# COMMIT;
COMMIT

Progress reporting
● pg_stat_progress_vacuum since v9.6.
● CREATE INDEX + REINDEX (+ CONCURRENTLY)

pg_stat_progress_create_index
● CLUSTER and VACUUM FULL

pg_stat_progress_cluster
● Progress phases can be confusing:

https://www.postgresql.org/docs/current/progress-reporting.html

jsonpath
● Expressions => like XPath for XML.
● jsonpath data type, lookup at parts of JSON tree.
● Operators.
● No datetime yet (committed in v13~).
● Documentation:
● https://www.postgresql.org/docs/devel/functions-

json.html

Release notes:
https://www.postgresql.org/docs/12/released

Thanks!
Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

